❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdaySchneier on Security

Using LLMs to Exploit Vulnerabilities

17 June 2024 at 07:08

Interesting research: β€œTeams of LLM Agents can Exploit Zero-Day Vulnerabilities.”

Abstract: LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities).

In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 15 real-world vulnerabilities and show that our team of agents improve over prior work by up to 4.5Γ—.

The LLMs aren’t finding new vulnerabilities. They’re exploiting zero-daysβ€”which means they are not trained on themβ€”in new ways. So think about this sort of thing combined with another AI that finds new vulnerabilities in code.

These kinds of developments are important to follow, as they are part of the puzzle of a fully autonomous AI cyberattack agent. I talk about this sort of thing more here.

New Attack Against Self-Driving Car AI

10 May 2024 at 12:01

This is another attack that convinces the AI to ignore road signs:

Due to the way CMOS cameras operate, rapidly changing light from fast flashing diodes can be used to vary the color. For example, the shade of red on a stop sign could look different on each line depending on the time between the diode flash and the line capture.

The result is the camera capturing an image full of lines that don’t quite match each other. The information is cropped and sent to the classifier, usually based on deep neural networks, for interpretation. Because it’s full of lines that don’t match, the classifier doesn’t recognize the image as a traffic sign.

So far, all of this has been demonstrated before.

Yet these researchers not only executed on the distortion of light, they did it repeatedly, elongating the length of the interference. This meant an unrecognizable image wasn’t just a single anomaly among many accurate images, but rather a constant unrecognizable image the classifier couldn’t assess, and a serious security concern.

[…]

The researchers developed two versions of a stable attack. The first was GhostStripe1, which is not targeted and does not require access to the vehicle, we’re told. It employs a vehicle tracker to monitor the victim’s real-time location and dynamically adjust the LED flickering accordingly.

GhostStripe2 is targeted and does require access to the vehicle, which could perhaps be covertly done by a hacker while the vehicle is undergoing maintenance. It involves placing a transducer on the power wire of the camera to detect framing moments and refine timing control.

Research paper.

New Attack on VPNs

7 May 2024 at 11:32

This attack has been feasible for over two decades:

Researchers have devised an attack against nearly all virtual private network applications that forces them to send and receive some or all traffic outside of the encrypted tunnel designed to protect it from snooping or tampering.

TunnelVision, as the researchers have named their attack, largely negates the entire purpose and selling point of VPNs, which is to encapsulate incoming and outgoing Internet traffic in an encrypted tunnel and to cloak the user’s IP address. The researchers believe it affects all VPN applications when they’re connected to a hostile network and that there are no ways to prevent such attacks except when the user’s VPN runs on Linux or Android. They also said their attack technique may have been possible since 2002 and may already have been discovered and used in the wild since then.

[…]

The attack works by manipulating the DHCP server that allocates IP addresses to devices trying to connect to the local network. A setting known as option 121 allows the DHCP server to override default routing rules that send VPN traffic through a local IP address that initiates the encrypted tunnel. By using option 121 to route VPN traffic through the DHCP server, the attack diverts the data to the DHCP server itself.

❌
❌