❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Piping Up at the Gates of Dawn

22 June 2024 at 05:01
Astronomers have found the earliest and most distant galaxy yet.

Β© NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA)

The newly discovered galaxy, known as JADES-GS-z14-0, emanates light that is 13.5 billion years old.

Supermassive black hole roars to life as astronomers watch in real time

18 June 2024 at 12:29

Artist’s animation of the black hole at the center of SDSS1335+0728 awakening in real timeβ€”a first for astronomers.

In December 2019, astronomers were surprised to observe a long-quiet galaxy, 300 million light-years away, suddenly come alive, emitting ultraviolet, optical, and infrared light into space. Far from quieting down again, by February of this year, the galaxy had begun emitting X-ray light; it is becoming more active. Astronomers think it is most likely an active galactic nucleus (AGN), which gets its energy from supermassive black holes at the galaxy's center and/or from the black hole's spin. That's the conclusion of a new paper accepted for publication in the journal Astronomy and Astrophysics, although the authors acknowledge the possibility that it might also be some kind of rare tidal disruption event (TDE).

The brightening of SDSS1335_0728 in the constellation Virgo, after decades of quietude, was first detected by the Zwicky Transient Facility telescope. Its supermassive black hole is estimated to be about 1 million solar masses. To get a better understanding of what might be going on, the authors combed through archival data and combined that with data from new observations from various instruments, including the X-shooter, part of the Very Large Telescope (VLT) in Chile's Atacama Desert.

There are many reasons why a normally quiet galaxy might suddenly brighten, including supernovae or a TDE, in which part of the shredded star's original mass is ejected violently outward. This, in turn, can form an accretion disk around the black hole that emits powerful X-rays and visible light. But these events don't last nearly five yearsβ€”usually not more than a few hundred days.

Read 5 remaining paragraphs | Comments

Black holes formed quasars less than a billion years after Big Bang

17 June 2024 at 17:56
Image of a glowing disk with a bright line coming out of its center.

Enlarge (credit: NASA, ESA, CSA, Joseph Olmsted (STScI))

Supermassive black holes appear to be present at the center of every galaxy, going back to some of the earliest galaxies in the Universe. And we have no idea how they got there. It shouldn't be possible for them to grow from supernova remnants to supermassive sizes as quickly as they do. And we're not aware of any other mechanism that could form something big enough that extreme growth wouldn't be necessary.

The seeming impossibility of supermassive black holes in the early Universe was already a bit of a problem; the James Webb Space Telescope has only made it worse by finding ever-earlier instances of galaxies with supermassive black holes. In the latest example, researchers have used the Webb to characterize a quasar powered by a supermassive black hole as it existed approximately 750 million years after the Big Bang. And it looks shockingly normal.

Looking back in time

Quasars are the brightest objects in the Universe, powered by actively feeding supermassive black holes. The galaxy surrounding them feeds them enough material that they form bright accretion disks and powerful jets, both of which emit copious amounts of radiation. They're often partly shrouded in dust, which glows from absorbing some of the energy emitted by the black hole. These quasars emit so much radiation that they ultimately drive some of the nearby material out of the galaxy entirely.

Read 13 remaining paragraphs | Comments

How the Webb and Gaia missions bring a new perspective on galaxy formation

10 June 2024 at 07:00
NASA's James Webb Space Telescope reveals the Rho Ophiuchi cloud complex, the closest star-forming region to Earth.

Enlarge / NASA's James Webb Space Telescope reveals the Rho Ophiuchi cloud complex, the closest star-forming region to Earth.

In a feat of galactic archeology, astronomers are using ever more detailed information to trace the origin of our galaxyβ€”and to learn about how other galaxies formed in the early stages of the Universe. Using powerful space telescopes like Gaia and James Webb, astronomers are able to peer back in time and look at some of the oldest stars and galaxies. Between Gaia’s data on the position and movements of stars within our Milky Way and Webb’s observations of early galaxies that formed when the Universe was still young, astronomers are learning how galaxies come together and have made surprising discoveries that suggest the early Universe was busier and brighter than anyone previously imagined.

The Milky Way’s earliest pieces

In a recent paper, researchers using the Gaia space telescope identified two streams of stars, named Shakti and Shiva, each of which contains a total mass of around 10 million Suns and which are thought to have merged into the Milky Way around 12 billion years ago.

These streams were present even before the Milky Way had features like a disk or its spiral arms, and researchers think they could be some of the earliest building blocks of the galaxy as it developed.

Read 43 remaining paragraphs | Comments

❌
❌