Normal view

There are new articles available, click to refresh the page.
Today — 26 June 2024Main stream

It doesn’t make sense: why US tariffs on Chinese cleantech risk the green transition | Jeffrey Frankel

26 June 2024 at 00:00

Global demand for renewable energy is surging so why make solar panels, wind turbines and EVs dearer for western consumers?

With historic heatwaves sweeping across the US and other parts of the northern hemisphere, June is expected to be the 13th consecutive month of record-breaking global temperatures. The primary cause, of course, is the enormous amount of greenhouse gases in the atmosphere. Despite the existential threat posed by rising atmospheric concentrations of greenhouse gases, emissions continue to increase at a faster pace than previously anticipated.

On one front, however, progress in the fight against the climate crisis has exceeded expectations. Amid the global shift from internal combustion engines to electric vehicles and the accelerated adoption of solar and wind power, demand for renewable energy is rapidly rising in the US and the EU.

Continue reading...

💾

© Photograph: Bloomberg/Getty Images

💾

© Photograph: Bloomberg/Getty Images

Before yesterdayMain stream

Congress passes bill to jumpstart new nuclear power tech

21 June 2024 at 16:40
A nuclear reactor and two cooling towards on a body of water, with a late-evening glow in the sky.

Enlarge (credit: hrui)

Earlier this week, the US Senate passed what's being called the ADVANCE Act, for Accelerating Deployment of Versatile, Advanced Nuclear for Clean Energy. Among a number of other changes, the bill would attempt to streamline permitting for newer reactor technology and offer cash incentives for the first companies that build new plants that rely on one of a handful of different technologies. It enjoyed broad bipartisan support both in the House and Senate and now heads to President Biden for his signature.

Given Biden's penchant for promoting his bipartisan credentials, it's likely to be signed into law. But the biggest hurdles nuclear power faces are all economic, rather than regulatory, and the bill provides very little in the way of direct funding that could help overcome those barriers.

Incentives

For reasons that will be clear only to congressional staffers, the Senate version of the bill was attached to an amendment to the Federal Fire Prevention and Control Act. Nevertheless, it passed by a margin of 88-2, indicating widespread (and potentially veto-proof) support. Having passed the House already, there's nothing left but the president's signature.

Read 17 remaining paragraphs | Comments

Scaling green hydrogen technology for the future

Unlike conventional energy sources, green hydrogen offers a way to store and transfer energy without emitting harmful pollutants, positioning it as essential to a sustainable and net-zero future. By converting electrical power from renewable sources into green hydrogen, these low-carbon-intensity energy storage systems can release clean, efficient power on demand through combustion engines or fuel cells. When produced emission-free, hydrogen can decarbonize some of the most challenging industrial sectors, such as steel and cement production, industrial processes, and maritime transport.

“Green hydrogen is the key driver to advance decarbonization,” says Dr. Christoph Noeres, head of green hydrogen at global electrolysis specialist thyssenkrupp nucera. This promising low-carbon-intensity technology has the potential to transform entire industries by providing a clean, renewable fuel source, moving us toward a greener world aligned with industry climate goals.

Accelerating production of green hydrogen

Hydrogen is the most abundant element in the universe, and its availability is key to its appeal as a clean energy source. However, hydrogen does not occur naturally in its pure form; it is always bound to other elements in compounds like water (H2O). Pure hydrogen is extracted and isolated from water through an energy-intensive process called conventional electrolysis.

Hydrogen is typically produced today via steam-methane reforming, in which high-temperature steam is used to produce hydrogen from natural gas. Emissions produced by this process have implications for hydrogen’s overall carbon footprint: worldwide hydrogen production is currently responsible for as many CO2 emissions as the United Kingdom and Indonesia combined.

A solution lies in green hydrogen—hydrogen produced using electrolysis powered by renewable sources. This unlocks the benefits of hydrogen without the dirty fuels. Unfortunately, very little hydrogen is currently powered by renewables: less than 1% came from non-fossil fuel sources in 2022.

A massive scale-up is underway. According to McKinsey, an estimated 130 to 345 gigawatts (GW) of electrolyzer capacity will be necessary to meet the green hydrogen demand by 2030, with 246 GW of this capacity already announced. This stands in stark contrast to the current installed base of just 1.1 GW. Notably, to ensure that green hydrogen constitutes at least 14% of total energy consumption by 2050, a target that the International Renewable Energy Agency (IRENA) estimates is required to meet climate goals, 5,500 GW of cumulative installed electrolyzer capacity will be required.

However, scaling up green hydrogen production to these levels requires overcoming cost and infrastructure constraints. Becoming cost-competitive means improving and standardizing the technology, harnessing the scale efficiencies of larger projects, and encouraging government action to create market incentives. Moreover, the expansion of renewable energy in regions with significant solar, hydro, or wind energy potential is another crucial factor in lowering renewable power prices and, consequently, the costs of green hydrogen.

Electrolysis innovation

While electrolysis technologies have existed for decades, scaling them up to meet the demand for clean energy will be essential. Alkaline Water Electrolysis (AWE), the most dominant and developed electrolysis method, is poised for this transition. It has been utilized for decades, demonstrating efficiency and reliability in the chemical industry. Moreover, it is more cost effective than other electrolysis technologies and is well suited to be run directly with fluctuating renewable power input. Especially for large-scale applications, AWE demonstrates significant advantages in terms of investment and operating costs. “Transferring small-scale manufacturing and optimizing it towards mass manufacturing will need a high level of investment across the industry,” says Noeres.

Industries that already practice electrolysis, as well as those that already use hydrogen, such as fertilizer production, are well poised for conversion to green hydrogen. For example, thyssenkrupp nucera benefits from a decades-long heritage using electrolyzer technology in the chlor-alkali process, which produces chlorine and caustic soda for the chemical industry. The company “is able to use its existing supply chain to ramp up production quickly, a distinction that all providers don’t share,” says Noeres.

Alongside scaling up existing solutions, thyssenkrupp nucera is developing complementary techniques and technologies. Among these are solid oxide electrolysis cells (SOEC), which perform electrolysis at very high temperatures. While the need for high temperatures means this technique isn’t right for all customers, in industries where waste heat is readily available—such as chemicals—Noeres says SOEC offers up to 20% enhanced efficiency and reduces production costs.

Thyssenkrupp nucera has entered into a strategic partnership with the renowned German research institute Fraunhofer IKTS to move the technology toward applications in industrial manufacturing. The company envisages SOEC as a complement to AWE in the areas where it is cost effective to reduce overall energy consumption. “The combination of AWE and SOEC in thyssenkrupp nucera’s portfolio offers a unique product suite to the industry,” says Noeres.

While advancements in electrolysis technology and the diversification of its applications across various scales and industries are promising for green hydrogen production, a coordinated global ramp-up of renewable energy sources and clean power grids is also crucial. Although AWE electrolyzers are ready for deployment in large-scale, centralized green hydrogen production facilities, these must be integrated with renewable energy sources to truly harness their potential.

Making the green hydrogen market

Storage and transportation remain obstacles to a larger market for green hydrogen. While hydrogen can be compressed and stored, its low density presents a practical challenge. The volume of hydrogen is nearly four times greater than that of natural gas, and storage requires either ultra-high compression or costly refrigeration. Overcoming the economic and technical hurdles of high-volume hydrogen storage and transport will be critical to its potential as an exportable energy carrier.

In 2024, several high-profile green hydrogen projects launched in the U.S., advancing the growth of green hydrogen infrastructure and technology. The landmark Inflation Reduction Act (IRA) provides tax credits and government incentives for producing clean hydrogen and the renewable electricity used in its production. In October 2023, the Biden administration announced $7 billion for the country’s first clean hydrogen hubs, and the U.S. Department of Energy further allocated $750 million for 52 projects across 24 states to dramatically reduce the cost of clean hydrogen and establish American leadership in the industry. The potential economic impact from the IRA legislation is substantial: thyssenkrupp nucera expects the IRA to double or triple the U.S. green hydrogen market size.

“The IRA was a wake-up call for Europe, setting a benchmark for all the other countries on how to support the green hydrogen industry in this startup phase,” says Noeres. Germany’s H2Global scheme was one of the first European efforts to facilitate hydrogen imports with the help of subsidies, and it has since been followed up by the European Hydrogen Bank, which provided €720 million for green hydrogen projects in its pilot auction. “However, more investment is needed to push the green hydrogen industry forward,” says Noeres.

In the current green hydrogen market, China has installed more renewable power than any other country. With lower capital expenditure costs, China produces 40% of the world’s electrolyzers. Additionally, state-owned firms have pledged to build an extensive 6,000-kilometer network of pipelines for green hydrogen transportation by 2050.

Coordinated investment and supportive policies are crucial to ensure attractive incentives that can bring green hydrogen from a niche technology to a scalable solution globally. The Chinese green hydrogen market, along with that of other regions such as the Middle East and North Africa, has advanced significantly, garnering global attention for its competitive edge through large-scale projects. To compete effectively, the EU must create a global level playing field for European technologies through attractive investment incentives that can drive the transition of hydrogen from a niche to a global-scale solution. Supportive policies must be in place to also ensure that green products made with hydrogen, such as steel, are sufficiently incentivized and protected against carbon leakage.

A comprehensive strategy, combining investment incentives, open markets, and protection against market distortions and carbon leakage, is crucial for the EU and other countries to remain competitive in the rapidly evolving global green hydrogen market and achieve a decarbonized energy future. “To advance several gigawatt scale or multi-hundred megawatts projects forward,” says Noeres, “we need significantly more volume globally and comparable funding opportunities to make a real impact on global supply chains.”

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

The cost of building the perfect wave

17 June 2024 at 05:00

For nearly as long as surfing has existed, surfers have been obsessed with the search for the perfect wave. It’s not just a question of size, but also of shape, surface conditions, and duration—ideally in a beautiful natural environment. 

While this hunt has taken surfers from tropical coastlines reachable only by boat to swells breaking off icebergs, these days—as the sport goes mainstream—that search may take place closer to home. That is, at least, the vision presented by developers and boosters in the growing industry of surf pools, spurred by advances in wave-­generating technology that have finally created artificial waves surfers actually want to ride. 

Some surf evangelists think these pools will democratize the sport, making it accessible to more communities far from the coasts—while others are simply interested in cashing in. But a years-long fight over a planned surf pool in Thermal, California, shows that for many people who live in the places where they’re being built, the calculus isn’t about surf at all. 


Just some 30 miles from Palm Springs, on the southeastern edge of the Coachella Valley desert, Thermal is the future home of the 118-acre private, members-only Thermal Beach Club (TBC). The developers promise over 300 luxury homes with a dazzling array of amenities; the planned centerpiece is a 20-plus-acre artificial lagoon with a 3.8-acre surf pool offering waves up to seven feet high. According to an early version of the website, club memberships will start at $175,000 a year. (TBC’s developers did not respond to multiple emails asking for comment.)

That price tag makes it clear that the club is not meant for locals. Thermal, an unincorporated desert community, currently has a median family income of $32,340. Most of its residents are Latino; many are farmworkers. The community lacks much of the basic infrastructure that serves the western Coachella Valley, including public water service—leaving residents dependent on aging private wells for drinking water. 

Just a few blocks away from the TBC site is the 60-acre Oasis Mobile Home Park. A dilapidated development designed for some 1,500 people in about 300 mobile homes, Oasis has been plagued for decades by a lack of clean drinking water. The park owners have been cited numerous times by the Environmental Protection Agency for providing tap water contaminated with high levels of arsenic, and last year, the US Department of Justice filed a lawsuit against them for violating the Safe Drinking Water Act. Some residents have received assistance to relocate, but many of those who remain rely on weekly state-funded deliveries of bottled water and on the local high school for showers. 

Stephanie Ambriz, a 28-year-old special-needs teacher who grew up near Thermal, recalls feeling “a lot of rage” back in early 2020 when she first heard about plans for the TBC development. Ambriz and other locals organized a campaign against the proposed club, which she says the community doesn’t want and won’t be able to access. What residents do want, she tells me, is drinkable water, affordable housing, and clean air—and to have their concerns heard and taken seriously by local officials. 

Despite the grassroots pushback, which twice led to delays to allow more time for community feedback, the Riverside County Board of Supervisors unanimously approved the plans for the club in October 2020. It was, Ambriz says, “a shock to see that the county is willing to approve these luxurious developments when they’ve ignored community members” for decades. (A Riverside County representative did not respond to specific questions about TBC.) 

The desert may seem like a counterintuitive place to build a water-intensive surf pool, but the Coachella Valley is actually “the very best place to possibly put one of these things,” argues Doug Sheres, the developer behind DSRT Surf, another private pool planned for the area. It is “close to the largest [and] wealthiest surf population in the world,” he says, featuring “360 days a year of surfable weather” and mountain and lake views in “a beautiful resort setting” served by “a very robust aquifer.” 

In addition to the two planned projects, the Palm Springs Surf Club (PSSC) has already opened locally. The trifecta is turning the Coachella Valley into “the North Shore of wave pools,” as one aficionado described it to Surfer magazine. 

The effect is an acute cognitive dissonance—one that I experienced after spending a few recent days crisscrossing the valley and trying out the waves at PSSC. But as odd as this setting may seem, an analysis by MIT Technology Review reveals that the Coachella Valley is not the exception. Of an estimated 162 surf pools that have been built or announced around the world, as tracked by the industry publication Wave Pool Magazine, 54 are in areas considered by the nonprofit World Resources Institute (WRI) to face high or extremely high water stress, meaning that they regularly use a large portion of their available surface water supply annually. Regions in the “extremely high” category consume 80% or more of their water, while those in the “high” category use 40% to 80% of their supply. (Not all of Wave Pool Magazine’s listed pools will be built, but the publication tracks all projects that have been announced. Some have closed and over 60 are currently operational.)

Zoom in on the US and nearly half are in places with high or extremely high water stress, roughly 16 in areas served by the severely drought-stricken Colorado River. The greater Palm Springs area falls under the highest category of water stress, according to Samantha Kuzma, a WRI researcher (though she notes that WRI’s data on surface water does not reflect all water sources, including an area’s access to aquifers, or its water management plan).

Now, as TBC’s surf pool and other planned facilities move forward and contribute to what’s becoming a multibillion-dollar industry with proposed sites on every continent except Antarctica, inland waves are increasingly becoming a flash point for surfers, developers, and local communities. There are at least 29 organized movements in opposition to surf clubs around the world, according to an ongoing survey from a coalition called No to the Surf Park in Canéjan, which includes 35 organizations opposing a park in Bordeaux, France.  

While the specifics vary widely, at the core of all these fights is a question that’s also at the heart of the sport: What is the cost of finding, or now creating, the perfect wave—and who will have to bear it? 


Though wave pools have been around since the late 1800s, the first artificial surfing wave was built in 1969, and also in the desert—at Big Surf in Tempe, Arizona. But at that pool and its early successors, surfing was secondary; people who went to those parks were more interested in splashing around, and surfers themselves weren’t too excited by what they had to offer. The manufactured waves were too small and too soft, without the power, shape, or feel of the real thing. 

The tide really turned in 2015, when Kelly Slater, widely considered to be the greatest professional surfer of all time, was filmed riding a six-foot-tall, 50-second barreling wave. As the viral video showed, he was not in the wild but atop a wave generated in a pool in California’s Central Valley, some 100 miles from the coast.

Waves of that height, shape, and duration are a rarity even in the ocean, but “Kelly’s wave,” as it became known, showed that “you can make waves in the pool that are as good as or better than what you get in the ocean,” recalls Sheres, the developer whose company, Beach Street Development, is building mul­tiple surf pools around the country, including DSRT Surf. “That got a lot of folks excited—myself included.” 

In the ocean, a complex combination of factors—including wind direction, tide, and the shape and features of the seafloor—is required to generate a surfable wave. Re-creating them in an artificial environment required years of modeling, precise calculations, and simulations. 

Surf Ranch, Slater’s project in the Central Valley, built a mechanical system in which a 300-ton hydrofoil—which resembles a gigantic metal fin—is pulled along the length of a pool 700 yards long and 70 yards wide by a mechanical device the size of several train cars running on a track. The bottom of the pool is precisely contoured to mimic reefs and other features of the ocean floor; as the water hits those features, its movement creates the 50-second-long barreling wave. Once the foil reaches one end of the pool, it runs backwards, creating another wave that breaks in the opposite direction. 

While the result is impressive, the system is slow, producing just one wave every three to four minutes. 

Around the same time Slater’s team was tinkering with his wave, other companies were developing their own technologies to produce multiple waves, and to do so more rapidly and efficiently—key factors in commercial viability. 

Fundamentally, all the systems create waves by displacing water, but depending on the technology deployed, there are differences in the necessary pool size, the project’s water and energy requirements, the level of customization that’s possible, and the feel of the wave. 

Thomas Lochtefeld is a pioneer in the field and the CEO of Surf Loch, which powers PSSC’s waves. Surf Loch uses pneumatic technology, in which compressed air cycles water through chambers the size of bathroom stalls and lets operators create countless wave patterns.

One demo pool in Australia uses what looks like a giant mechanical doughnut that sends out waves the way a pebble dropped in water sends out ripples. Another proposed plan uses a design that spins out waves from a circular fan—a system that is mobile and can be placed in existing bodies of water. 

Of the two most popular techniques in commercial use, one relies on modular paddles attached to a pier that runs across a pool, which move in precise ways to generate waves. The other is pneumatic technology, which uses compressed air to push water through chambers the size of bathroom stalls, called caissons; the caissons pull in water and then push it back out into the pool. By choosing which modular paddles or caissons move first against the different pool bottoms, and with how much force at a time, operators can create a range of wave patterns. 

Regardless of the technique used, the design and engineering of most modern wave pools are first planned out on a computer. Waves are precisely calculated, designed, simulated, and finally tested in the pool with real surfers before they are set as options on a “wave menu” in proprietary software that surf-pool technologists say offers a theoretically endless number and variety of waves. 

On a Tuesday afternoon in early April, I am the lucky tester at the Palm Springs Surf Club, which uses pneumatic technology, as the team tries out a shoulder-high right-breaking wave. 

I have the pool to myself as the club prepares to reopen; it had closed to rebuild its concrete “beach” just 10 days after its initial launch because the original beach had not been designed to withstand the force of the larger waves that Surf Loch, the club’s wave technology provider, had added to the menu at the last minute. (Weeks after reopening in April, the surf pool closed again as the result of “a third-party equipment supplier’s failure,” according to Thomas Lochtefeld, Surf Loch’s CEO.)

I paddle out and, at staffers’ instructions, take my position a few feet away from the third caisson from the right, which they say is the ideal spot to catch the wave on the shoulder—meaning the unbroken part of the swell closest to its peak. 

The entire experience is surreal: waves that feel like the ocean in an environment that is anything but. 

Palm Springs Surf Club wide angle vie wof the wave pool
An employee test rides a wave, which was first calculated, designed, and simulated on a computer.
SPENCER LOWELL

In some ways, these pneumatic waves are better than what I typically ride around Los Angeles—more powerful, more consistent, and (on this day, at least) uncrowded. But the edge of the pool and the control tower behind it are almost always in my line of sight. And behind me are the PSSC employees (young men, incredible surfers, who keep an eye on my safety and provide much-needed tips) and then, behind them, the snow-capped San Jacinto Mountains. At the far end of the pool, behind the recently rebuilt concrete beach, is a restaurant patio full of diners who I can’t help but imagine are judging my every move. Still, for the few glorious seconds that I ride each wave, I am in the same flow state I experience in the ocean itself.  

Then I fall and sheepishly paddle back to PSSC’s encouraging surfer-employees to restart the whole process. I would be having a lot of fun—if I could just forget my self-consciousness, and the jarring feeling that I shouldn’t be riding waves in the middle of the desert at all.  


Though long inhabited by Cahuilla Indians, the Coachella Valley was sparsely populated until 1876, when the Southern Pacific Railroad added a new line out to the middle of the arid expanse. Shortly after, the first non-native settlers came to the valley and realized that its artesian wells, which flow naturally without the need to be pumped, provided ideal conditions for farming.  

Agricultural production exploded, and by the early 1900s, these once freely producing wells were putting out significantly less, leading residents to look for alternative water sources. In 1918, they created the Coachella Valley Water District (CVWD) to import water from the Colorado River via a series of canals. This water was used to supply the region’s farms and recharge the Coachella Aquifer, the region’s main source of drinking water. 

""
The author tests a shoulder-high wave at PSSC, where she says the waves were in some ways better than what she rides around Los Angeles.
SPENCER LOWELL

The water imports continue to this day—though the seven states that draw on the river are currently renegotiating their water rights amid a decades-long megadrought in the region. 

The imported water, along with CVWD’s water management plan, has allowed Coachella’s aquifer to maintain relatively steady levels “going back to 1970, even though most development and population has occurred since,” Scott Burritt, a CVWD spokesperson, told MIT Technology Review in an email. 

This has sustained not only agriculture but also tourism in the valley, most notably its world-class—and water-intensive—golf courses. In 2020, the 120 golf courses under the jurisdiction of the CVWD consumed 105,000 acre-feet of water per year (AFY); that’s an average of 875 AFY, or 285 million gallons per year per course. 

Surf pools’ proponents frequently point to the far larger amount of water golf courses consume to argue that opposing the pools on grounds of their water use is misguided. 

PSSC, the first of the area’s three planned surf clubs to open, requires an estimated 3 million gallons per year to fill its pool; the proposed DSRT Surf holds 7 million gallons and estimates that it will use 24 million gallons per year, which includes maintenance and filtration, and accounts for evaporation. TBC’s planned 20-acre recreational lake, 3.8 acres of which will contain the surf pool, will use 51 million gallons per year, according to Riverside County documents. Unlike standard swimming pools, none of these pools need to be drained and refilled annually for maintenance, saving on potential water use. DSRT Surf also boasts about plans to offset its water use by replacing 1 million square feet of grass from an adjacent golf course with drought-tolerant plants. 

a PSSC employee at a control panel overlooking the pool
Pro surfer and PSSC’s full-time “wave curator” Cheyne Magnusson watches test waves from the club’s control tower.
SPENCER LOWELL

With surf parks, “you can see the water,” says Jess Ponting, a cofounder of Surf Park Central, the main industry association, and Stoke, a nonprofit that aims to certify surf and ski resorts—and, now, surf pools—for sustainability. “Even though it’s a fraction of what a golf course is using, it’s right there in your face, so it looks bad.”

But even if it were just an issue of appearance, public perception is important when residents are being urged to reduce their water use, says Mehdi Nemati, an associate professor of environmental economics and policy at the University of California, Riverside. It’s hard to demand such efforts from people who see these pools and luxury developments being built around them, he says. “The questions come: Why do we conserve when there are golf courses or surfing … in the desert?” 

(Burritt, the CVWD representative, notes that the water district “encourages all customers, not just residents, to use water responsibly” and adds that CVWD’s strategic plans project that there should be enough water to serve both the district’s golf courses and its surf pools.)  

Locals opposing these projects, meanwhile, argue that developers are grossly underestimating their water use, and various engineering firms and some county officials have in fact offered projections that differ from the developers’ estimates. Opponents are specifically concerned about the effects of spray, evaporation, and other factors, which increase with higher temperatures, bigger waves, and larger pool sizes. 

As a rough point of reference, Slater’s 14-acre wave pool in Lemoore, California, can lose up to 250,000 gallons of water per day to evaporation, according to Adam Fincham, the engineer who designed the technology. That’s roughly half an Olympic swimming pool.

More fundamentally, critics take issue with even debating whether surf clubs or golf courses are worse. “We push back against all of it,” says Ambriz, who organized opposition to TBC and argues that neither the pool nor an exclusive new golf course in Thermal benefits the local community. Comparing them, she says, obscures greater priorities, like the water needs of households. 

Five surfers sit on their boards in a calm PSSC pool
The PSSC pool requires an estimated 3 million gallons of water per year. On top of a $40 admission fee, a private session there would cost between $3,500 and $5,000 per hour.
SPENCER LOWELL

The “primary beneficiary” of the area’s water, says Mark Johnson, who served as CVWD’s director of engineering from 2004 to 2016, “should be human consumption.”

Studies have shown that just one AFY, or nearly 326,000 gallons, is generally enough to support all household water needs of three California families every year. In Thermal, the gap between the demands of the surf pool and the needs of the community is even more stark: each year for the past three years, nearly 36,000 gallons of water have been delivered, in packages of 16-ounce plastic water bottles, to residents of the Oasis Mobile Home Park—some 108,000 gallons in all. Compare that with the 51 million gallons that will be used annually by TBC’s lake: it would be enough to provide drinking water to its neighbors at Oasis for the next 472 years.

Furthermore, as Nemati notes, “not all water is the same.” CVWD has provided incentives for golf courses to move toward recycled water and replace grass with less water-­intensive landscaping. But while recycled water and even rainwater have been proposed as options for some surf pools elsewhere in the world, including France and Australia, this is unrealistic in Coachella, which receives just three to four inches of rain per year. 

Instead, the Coachella Valley surf pools will depend on a mix of imported water and nonpotable well water from Coachella’s aquifer. 

But any use of the aquifer worries Johnson. Further drawing down the water, especially in an underground aquifer, “can actually create water quality problems,” he says, by concentrating “naturally occurring minerals … like chromium and arsenic.” In other words, TBC could worsen the existing problem of arsenic contamination in local well water. 

When I describe to Ponting MIT Technology Review’s analysis showing how many surf pools are being built in desert regions, he seems to concede it’s an issue. “If 50% of the surf parks in development are in water-stressed areas,” he says, “then the developers are not thinking about the right things.” 


Before visiting the future site of Thermal Beach Club, I stopped in La Quinta, a wealthy town where, back in 2022, community opposition successfully stopped plans for a fourth pool planned for the Coachella Valley. This one was developed by the Kelly Slater Wave Company, which was acquired by the World Surf League in 2016. 

Alena Callimanis, a longtime resident who was a member of the community group that helped defeat the project, says that for a year and a half, she and other volunteers often spent close to eight hours a day researching everything they could about surf pools—and how to fight them. “We knew nothing when we started,” she recalls. But the group learned quickly, poring over planning documents, consulting hydrologists, putting together presentations, providing comments at city council hearings, and even conducting their own citizen science experiments to test the developers’ assertions about the light and noise pollution the project could create. (After the council rejected the proposal for the surf club, the developers pivoted to previously approved plans for a golf course. Callimanis’s group also opposes the golf course, raising similar concerns about water use, but since plans have already been approved, she says, there is little they can do to fight back.) 

view across an intersection of a mobile home framed by palm trees
Just a few blocks from the site of the planned Thermal Beach Club is the Oasis Mobile Home Park, which has been plagued for decades by a lack of clean drinking water.
""
A water pump sits at the corner of farm fields in Thermal, California, where irrigation water is imported from the Colorado River.

It was a different story in Thermal, where three young activists juggled jobs and graduate programs as they tried to mobilize an under-resourced community. “Folks in Thermal lack housing, lack transportation, and they don’t have the ability to take a day off from work to drive up and provide public comment,” says Ambriz. 

But the local pushback did lead to certain promises, including a community benefit payment of $2,300 per luxury housing unit, totaling $749,800. In the meeting approving the project, Riverside County supervisor Manuel Perez called this “unprecedented” and credited the efforts of Ambriz and her peers. (Ambriz remains unconvinced. “None of that has happened,” she says, and payments to the community don’t solve the underlying water issues that the project could exacerbate.) 

That affluent La Quinta managed to keep a surf pool out of its community where working-class Thermal failed is even more jarring in light of industry rhetoric about how surf pools could democratize the sport. For Bryan Dickerson, the editor in chief of Wave Pool Magazine, the collective vision for the future is that instead of “the local YMCA … putting in a skate park, they put in a wave pool.” Other proponents, like Ponting, describe how wave pools can provide surf therapy or opportunities for underrepresented groups. A design firm in New York City, for example, has proposed to the city a plan for an indoor wave pool in a low-income, primarily black and Latino neighborhood in Queens—for $30 million. 

For its part, PSSC cost an estimated $80 million to build. On top of a $40 general admission fee, a private session like the one I had would cost $3,500 to $5,000 per hour, while a public session would be at least $100 to $200, depending on the surfer’s skill level and the types of waves requested. 

In my two days traversing the 45-mile Coachella Valley, I kept thinking about how this whole area was an artificial oasis made possible only by innovations that changed the very nature of the desert, from the railroad stop that spurred development to the irrigation canals and, later, the recharge basins that stopped the wells from running out. 

In this transformed environment, I can see how the cognitive dissonance of surfing a desert wave begins to shrink, tempting us to believe that technology can once again override the reality of living (or simply playing) in the desert in a warming and drying world. 

But the tension over surf pools shows that when it comes to how we use water, maybe there’s no collective “us” here at all. 

These board games want you to beat climate change

14 June 2024 at 05:00

It’s game night, and I’m crossing my fingers, hoping for a hurricane. 

I roll the die and it clatters across the board, tumbling to a stop to reveal a tiny icon of a tree stump. Bad news: I just triggered deforestation in the Amazon. That seals it. I failed to stop climate change—at least this board-game representation of it.

The urgent need to address climate change might seem like unlikely fodder for a fun evening. But a growing number of games are attempting to take on the topic, including a version of the bestseller Catan released this summer.

As a climate reporter, I was curious about whether games could, even abstractly, represent the challenge of the climate crisis. Perhaps more crucially, could they possibly be any fun? 

My investigation started with Daybreak, a board game released in late 2023 by a team that includes the creator of Pandemic (infectious disease—another famously light topic for a game). Daybreak is a cooperative game where players work together to cut emissions and survive disasters. The group either wins or loses as a whole.

When I opened the box, it was immediately clear that this wouldn’t be for the faint of heart. There are hundreds of tiny cardboard and wooden pieces, three different card decks, and a surprisingly thick rule book. Setting it up, learning the rules, and playing for the first time took over two hours.

the components of the game Daybreak which has Game cards depicting Special Drawing Rights, Clean Electricity Plants, and Reforestation themed play cards
Daybreak, a cooperative board game about stopping climate change.
COURTESY OF CMYK

Daybreak is full of details, and I was struck by how many of them it gets right. Not only are there cards representing everything from walkable cities to methane removal, but each features a QR code players can use to learn more.

In each turn, players deploy technologies or enact policies to cut climate pollution. Just as in real life, emissions have negative effects. Winning requires slashing emissions to net zero (the point where whatever’s emitted can be soaked up by forests, oceans, or direct air capture). But there are multiple ways for the whole group to lose, including letting the global average temperature increase by 2 °C or simply running out of turns.

 In an embarrassing turn of events for someone who spends most of her waking hours thinking about climate change, nearly every round of Daybreak I played ended in failure. Adding insult to injury, I’m not entirely sure that I was having fun. Sure, the abstract puzzle was engaging and challenging, and after a loss, I’d be checking the clock, seeing if there was time to play again. But once all the pieces were back in the box, I went to bed obsessing about heat waves and fossil-fuel disinformation. The game was perhaps representing climate change a little bit too well.

I wondered if a new edition of a classic would fare better. Catan, formerly Settlers of Catan, and its related games have sold over 45 million copies worldwide since the original’s release in 1995. The game’s object is to build roads and settlements, setting up a civilization. 

In late 2023, Catan Studios announced that it would be releasing a version of its game called New Energies, focused on climate change. The new edition, out this summer, preserves the same central premise as the original. But this time, players will also construct power plants, generating energy with either fossil fuels or renewables. Fossil fuels are cheaper and allow for quicker expansion, but they lead to pollution, which can harm players’ societies and even end the game early.

Before I got my hands on the game, I spoke with one of its creators, Benjamin Teuber, who developed the game with his late father, Klaus Teuber, the mastermind behind the original Catan.

To Teuber, climate change is a more natural fit for a game than one might expect. “We believe that a good game is always around a dilemma,” he told me. The key is to simplify the problem sufficiently, a challenge that took the team dozens of iterations while developing New Energies. But he also thinks there’s a need to be at least somewhat encouraging. “While we have a severe topic, or maybe even especially because we have a severe topic, you can’t scare off the people by making them just have a shitty evening,” Teuber says.

In New Energies, the first to gain 10 points wins, regardless of how polluting that player’s individual energy supply is. But if players collectively build too many fossil-fuel plants and pollution gets too high, the game ends early, in which case whoever has done the most work to clean up their own energy supply is named the winner.

That’s what happened the first time I tested out the game. While I had been lagging in points, I ended up taking the win, because I had built more renewable power plants than my competitors.

This relatively rosy ending had me conflicted. On one hand, I was delighted, even if it felt like a consolation prize. 

But I found myself fretting over the messages that New Energies will send to players. A simple game that crowns a winner may be more playable, but it doesn’t represent how complicated the climate crisis is, or how urgently we need to address it. 

I’m glad climate change has a spot on my game shelf, and I hope these and other games find their audiences and get people thinking about the issues. But I’ll understand the impulse to reach for other options when game night rolls around, because I can’t help but dwell on the fact that in the real world, we won’t get to reset the pieces and try again.

This London non-profit is now one of the biggest backers of geoengineering research

14 June 2024 at 05:00

A London-based nonprofit is poised to become one of the world’s largest financial backers of solar geoengineering research. And it’s just one of a growing number of foundations eager to support scientists exploring whether the world could ease climate change by reflecting away more sunlight.

Quadrature Climate Foundation, established in 2019 and funded through the proceeds of the investment fund Quadrature Capital, plans to provide $40 million for work in this field over the next three years, Greg De Temmerman, the organization’s chief science officer, told MIT Technology Review

That’s a big number for this subject—double what all foundations and wealthy individuals provided from 2008 through 2018 and roughly on par with what the US government has offered to date. 

“We think we can have a very strong impact in accelerating research, making sure it’s happening, and trying to unlock some public money at some point,” De Temmerman says.

Other nonprofits are set to provide tens of millions of dollars’ worth of additional grants to solar geoengineering research or related government advocacy work in the coming months and years. The uptick in funding will offer scientists in the controversial field far more support than they’ve enjoyed in the past and allow them to pursue a wider array of lab work, modeling, and potentially even outdoor experiments that could improve our understanding of the benefits and risks of such interventions. 

“It just feels like a new world, really different from last year,” says David Keith, a prominent geoengineering researcher and founding faculty director of the Climate Systems Engineering Initiative at the University of Chicago.

Other nonprofits that have recently disclosed funding for solar geoengineering research or government advocacy, or announced plans to provide it, include the Simons Foundation, the Environmental Defense Fund, and the Bernard and Anne Spitzer Charitable Trust. 

In addition, Meta’s former chief technology officer, Mike Schroepfer, told MIT Technology Review he is spinning out a new nonprofit, Outlier Projects. He says it will provide funding to solar geoengineering research as well as to work on ocean-based carbon removal and efforts to stabilize rapidly melting glaciers.

Outlier has already issued grants for the first category to the Environmental Defense Fund, Keith’s program at the University of Chicago, and two groups working to support research and engagement on the subject in the poorer, hotter parts of the world: the Degrees Initiative and the Alliance for Just Deliberation on Solar Geoengineering.

Researchers say that the rising dangers of climate change, the lack of progress on cutting emissions, and the relatively small amount of government research funding to date are fueling the growing support for the field.

“A lot of people are recognizing the obvious,” says Douglas MacMartin, a senior research associate in mechanical and aerospace engineering at Cornell, who focuses on geoengineering. “We’re not in a good position with regard to mitigation—and we haven’t spent enough money on research to be able to support good, wise decisions on solar geoengineering.”

Scientists are exploring a variety of potential methods of reflecting away more sunlight, including injecting certain particles into the stratosphere to mimic the cooling effect of volcanic eruptions, spraying salt toward marine clouds to make them brighter, or sprinkling fine dust-like material into the sky to break up heat-trapping cirrus clouds.

Critics contend that neither nonprofits nor scientists should support studying any of these methods, arguing that raising the possibility of such interventions eases pressure to cut emissions and creates a “slippery slope” toward deploying the technology. Even some who support more research fear that funding it through private sources, particularly from wealthy individuals who made their fortunes in tech and finance, may allow studies to move forward without appropriate oversight and taint public perceptions of the field.

The sense that we’re “putting the climate system in the care of people who have disrupted the media and information ecosystems, or disrupted finance, in the past” could undermine public trust in a scientific realm that many already find unsettling, says Holly Buck, an assistant professor at the University of Buffalo and author of After Geoengineering.

‘Unlocking solutions’

One of Quadrature’s first solar geoengineering grants went to the University of Washington’s Marine Cloud Brightening Program. In early April, that research group made headlines for beginning, and then being forced to halt, small-scale outdoor experiments on a decommissioned aircraft carrier sitting off the coast of Alameda, California. The effort entailed spraying a mist of small sea salt particles into the air. 

Quadrature was also one of the donors to a $20.5 million fund for the Washington, DC, nonprofit SilverLining, which was announced in early May. The group pools and distributes grants to solar geoengineering researchers around the world and has pushed for greater government support and funding for the field. The new fund will support that policy advocacy work as well as efforts to “promote equitable participation by all countries,” Kelly Wanser, executive director of SilverLining, said in an email.

She added that it’s crucial to accelerate solar geoengineering research because of the rising dangers of climate change, including the risk of passing “catastrophic tipping points.”

“Current climate projections may even underestimate risks, particularly to vulnerable populations, highlighting the urgent need to improve risk prediction and expand response strategies,” she wrote.

Quadrature has also issued grants for related work to Colorado State University, the University of Exeter, and the Geoengineering Model Intercomparison Project, an effort to run the same set of modeling experiments across an array of climate models. 

The foundation intends to direct its solar geoengineering funding to advance efforts in two main areas: academic research that could improve understanding of various approaches, and work to develop global oversight structures “to enable decision-making on [solar radiation modification] that is transparent, equitable, and science based.”

“We want to empower people to actually make informed decisions at some point,” De Temmerman says, stressing the particular importance of ensuring that people in the Global South are actively involved in such determinations. 

He says that Quadrature is not advocating for specific outcomes, taking no position on whether or not to ultimately use such tools. It also won’t support for-profit startups. 

In an emailed response to questions, he stressed that the funding for solar geoengineering is a tiny part of the foundation’s overall mission, representing just 5% of its $930 million portfolio. The lion’s share has gone to accelerate efforts to cut greenhouse-gas pollution, remove it from the atmosphere, and help vulnerable communities “respond and adapt to climate change to minimize harm.”

Billionaires Greg Skinner and Suneil Setiya founded both the Quadrature investment fund as well as the foundation. The nonprofit’s stated mission is unlocking solutions to the climate crisis, which it describes as “the most urgent challenge of our time.” But the group, which has 26 employees, has faced recent criticism for its benefactors’ stakes in oil and gas companies. Last summer, the Guardian reported that Quadrature Capital held tens of millions of dollars in investments in dozens of fossil-fuel companies, including ConocoPhillips and Cheniere Energy.

In response to a question about the potential for privately funded foundations to steer research findings in self-interested ways, or to create the perception that the results might be so influenced, De Temmerman stated: “We are completely transparent in our funding, ensuring it is used solely for public benefit and not for private gain.”

More foundations, more funds 

To be sure, a number of wealthy individuals and foundations have been providing funds for years to solar geoengineering research or policy work, or groups that collect funds to do so.

A 2021 paper highlighted contributions from a number of wealthy individuals, with a high concentration from the tech sector, including Microsoft cofounder Bill Gates, Facebook cofounder Dustin Moskovitz, Facebook alum and venture capitalist Matt Cohler, former Google executive (and extreme skydiver) Alan Eustace, and tech and climate solutions investors Chris and Crystal Sacca. It noted a number of nonprofits providing grants to the field as well, including the Hewlett Foundation, the Alfred P. Sloan Foundation, and the Blue Marble Fund.

But despite the backing of those high-net-worth individuals, the dollar figures have been low. From 2008 through 2018, total private funding only reached about $20 million, while government funding just topped $30 million. 

The spending pace is now picking up, though, as new players move in.

The Simons Foundation previously announced it would provide $50 million to solar geoengineering research over a five-year period. The New York–based nonprofit invited researchers to apply for grants of up to $500,000, adding that it “strongly” encouraged scientists in the Global South to do so. 

The organization is mostly supporting modeling and lab studies. It said it would not fund social science work or field experiments that would release particles into the environment. Proposals for such experiments have sparked heavy public criticism in the past.

Simons recently announced a handful of initial awards to researchers at Harvard, Princeton, ETH Zurich, the Indian Institute of Tropical Meteorology, the US National Center for Atmospheric Research, and elsewhere.

“For global warming, we will need as many tools in the toolbox as possible,” says David Spergel, president of the Simons Foundation. 

“This was an area where there was a lot of basic science to do, and a lot of things we didn’t understand,” he adds. “So we wanted to fund the basic science.”

In January, the Environmental Defense Fund hosted a meeting at its San Francisco headquarters to discuss the guardrails that should guide research on solar geoengineering, as first reported by Politico. EDF had already provided some support to the Solar Radiation Management Governance Initiative, a partnership with the Royal Society and other groups set up to “ensure that any geoengineering research that goes ahead—inside or outside the laboratory—is conducted in a manner that is responsible, transparent, and environmentally sound.” (It later evolved into the Degrees Initiative.)

But EDF has now moved beyond that work and is “in the planning stages of starting a research and policy initiative on [solar radiation modification],” said Lisa Dilling, associate chief scientist at the environmental nonprofit, in an email. That program will include regranting, which means raising funds from other groups or individuals and distributing them to selected recipients, and advocating for more public funding, she says. 

Outlier also provided a grant to a new nonprofit, Reflective. This organization is developing a road map to prioritize research needs and pooling philanthropic funding to accelerate work in the most urgent areas, says its founder, Dakota Gruener. 

Gruener was previously the executive director of ID2020, a nonprofit alliance that develops digital identification systems. Cornell’s MacMartin is a scientific advisor to the new nonprofit and will serve as the chair of the scientific advisory board.

Government funding is also slowly increasing. 

The US government started a solar geoengineering research program in 2019, funded through the National Oceanic and Atmospheric Administration, that currently provides about $11 million a year.

In February, the UK’s Natural Environment Research Council announced a £10.5 million, five-year research program. In addition, the UK’s Advanced Research and Invention Agency has said it’s exploring and soliciting input for a research program in climate and weather engineering.

Funding has not been allocated as yet, but the agency’s programs typically provide around £50 million.

‘When, not if’

More funding is generally welcome news for researchers who hope to learn more about the potential of solar geoengineering. Many argue that it’s crucial to study the subject because the technology may offer ways to reduce death and suffering, and prevent the loss of species and the collapse of ecosystems. Some also stress it’s crucial to learn what impact these interventions might have and how these tools could be appropriately regulated, because nations may be tempted to implement them unilaterally in the face of extreme climate crises.

It’s likely a question of “when, not if,” and we should “act and research accordingly,” says Gernot Wagner, a climate economist at Columbia Business School, who was previously the executive director of Harvard’s Solar Geoengineering Research Program. “In many ways the time has come to take solar geoengineering much more seriously.”

In 2021, a National Academies report recommended that the US government create a solar geoengineering research program, equipped with $100 million to $200 million in funding over five years.

But there are differences between coordinated government-funded research programs, which have established oversight bodies to consider the merit, ethics, and appropriate transparency of proposed research, and a number of nonprofits with different missions providing funding to the teams they choose. 

To the degree that they create oversight processes that don’t meet the same standards, it could affect the type of science that’s done, the level of public notice provided, and the pressures that researchers feel to deliver certain results, says Duncan McLaren, a climate intervention fellow at the University of California, Los Angeles.

“You’re not going to be too keen on producing something that seems contrary to what you thought the grant maker was looking for,” he says, adding later: “Poorly governed research could easily give overly optimistic answers about what [solar geoengineering] could do, and what its side effects may or may not be.”

Whatever the motivations of individual donors, Buck fears that the concentration of money coming from high tech and finance could also create optics issues, undermining faith in research and researchers and possibly slowing progress in the field.

“A lot of this is going to backfire because it’s going to appear to people as Silicon Valley tech charging in and breaking things,” she says. 

Cloud controversy

Some of the concerns about privately funded work in this area are already being tested.

By most accounts, the Alameda experiment in marine cloud brightening that Quadrature backed was an innocuous basic-science project, which would not have actually altered clouds. But the team stirred up controversy by moving ahead without wide public notice.

City officials quickly halted the experiments, and earlier this month the city council voted unanimously to shut the project down.

Alameda mayor Marilyn Ezzy Ashcraft has complained that city staffers received only vague notice about the project up front. They were then inundated with calls from residents who had heard about it in the media and were concerned about the health implications, she said, according to CBS News.

In response to a question about the criticism, SilverLining’s Wanser said in an email: “We worked with the lease-holder, the USS Hornet, on the process for notifying the city of Alameda. The city staff then engaged experts to independently evaluate the health and environmental safety of the … studies, who found that they did not pose any environmental or health risks to the community.”

Wanser, who is a principal of the Marine Cloud Brightening Program, stressed they’ve also received offers of support from local residents and businesses.

“We think that the availability of data and information on the nature of the studies, and its evaluation by local officials, was valuable in helping people consider it in an informed way for themselves,” she added.

Some observers were also concerned that the research team said it selected its own six-member board to review the proposed project. That differs from a common practice with publicly funded scientific experiments, which often include a double-blind review process, in which neither the researchers nor the reviewers know each other’s names. The concern with breaking from that approach is that scientists could select outside researchers who they believe are likely to greenlight their proposals, and the reviewers may feel pressure to provide more favorable feedback than they might offer anonymously.

Wanser stressed that the team picked “distinguished researchers in the specialized field.”

“There are different approaches for different programs, and in this case, the levels of expertise and transparency were important features,” she added. “They have not received any criticism of the design of the studies themselves, which speaks to their robustness and their value.”

‘Transparent and responsible’

Solar geoengineering researchers often say that they too would prefer public funding, all things being equal. But they stress that those sources are still limited and it’s important to move the field forward in the meantime, so long as there are appropriate standards in place.

“As long as there’s clear transparency about funding sources, [and] there’s no direct influence on the research by the donors, I don’t precisely see what the problem is,” MacMartin says. 

Several nonprofits emerging or moving into this space said that they are working to create responsible oversight structures and rules.

Gruener says that Reflective won’t accept anonymous donations or contributions from people whose wealth comes mostly from fossil fuels. She adds that all donors will be disclosed, that they won’t have any say over the scientific direction of the organization or its chosen research teams, and that they can’t sit on the organization’s board. 

“We think transparency is the only way to build trust, and we’re trying to ensure that our governance structure, our processes, and the outcomes of our research are all public, understandable, and readily available,” she says.

In a statement, Outlier said it’s also in favor of more publicly supported work: “It’s essential for governments to become the leading funders and coordinators of research in these areas.” It added that it’s supporting groups working to accelerate “government leadership” on the subject, including through its grant to EDF. 

Quadrature’s De Temmerman stresses the importance of public research programs as well, noting that the nonprofit hopes to catalyze much more such funding through its support for government advocacy work. 

“We are here to push at the beginning and then at some point just let some other forms of capital actually come,” he says.

Why we need to shoot carbon dioxide thousands of feet underground

13 June 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

There’s often one overlooked member in a duo. Peanut butter outshines jelly in a PB&J every time (at least in my eyes). For carbon capture and storage technology, the storage part tends to be the underappreciated portion. 

Carbon capture and storage (CCS) tech has two main steps (as you might guess from the name). First, carbon dioxide is filtered out of emissions at facilities like fossil-fuel power plants. Then it gets locked away, or stored.  

Wrangling pollution might seem like the important bit, and there’s often a lot of focus on what fraction of emissions a CCS system can filter out. But without storage, the whole project would be pretty useless. It’s really the combination of capture and long-term storage that helps to reduce climate impact. 

Storage is getting more attention lately, though, and there’s something of a carbon storage boom coming, as my colleague James Temple covered in his latest story. He wrote about what a rush of federal subsidies will mean for the CCS business in the US, and how supporting new projects could help us hit climate goals or push them further out of reach, depending on how we do it. 

The story got me thinking about the oft-forgotten second bit of CCS. Here’s where we might store captured carbon pollution, and why it matters. 

When it comes to storage, the main requirement is making sure the carbon dioxide can’t accidentally leak out and start warming up the atmosphere.

One surprising place that might fit the bill is oil fields. Instead of building wells to extract fossil fuels, companies are looking to build a new type of well where carbon dioxide that’s been pressurized until it reaches a supercritical state—in which liquid and gas phases don’t really exist—is pumped deep underground. With the right conditions (including porous rock deep down and a leak-preventing solid rock layer on top), the carbon dioxide will mostly stay put. 

Shooting carbon dioxide into the earth isn’t actually a new idea, though in the past it’s largely been used by the oil and gas industry for a very different purpose: pulling more oil out of the ground. In a process called enhanced oil recovery, carbon dioxide is injected into wells, where it frees up oil that’s otherwise tricky to extract. In the process, most of the injected carbon dioxide stays underground. 

But there’s a growing interest in sending the gas down there as an end in itself, sparked in part in the US by new tax credits in the Inflation Reduction Act. Companies can rake in $85 per ton of carbon dioxide that’s captured and permanently stored in geological formations, depending on the source of the gas and how it’s locked away. 

In his story, James took a look at one proposed project in California, where one of the state’s largest oil and gas producers has secured draft permits from federal regulators. The project would inject carbon dioxide about 6,000 feet below the surface of the earth, and the company’s filings say the project could store tens of millions of tons of carbon dioxide over the next couple of decades. 

It’s not just land-based projects that are sparking interest, though. State officials in Texas recently awarded a handful of leases for companies to potentially store carbon dioxide deep underwater in the Gulf of Mexico.

And some companies want to store carbon dioxide in products and materials that we use, like concrete. Concrete is made by mixing reactive cement with water and material like sand; if carbon dioxide is injected into a fresh concrete mix, some of it will get involved in the reactions, trapping it in place. I covered how two companies tested out this idea in a newsletter last year.

Products we use every day, from diamonds to sunglasses, can be made with captured carbon dioxide. If we assume that those products stick around for a long time and don’t decompose (how valid this assumption is depends a lot on the product), one might consider these a form of long-term storage, though these markets probably aren’t big enough to make a difference in the grand scheme of climate change. 

Ultimately, though of course we need to emit less, we’ll still need to lock carbon away if we’re going to meet our climate goals.  


Now read the rest of The Spark

Related reading

For all the details on what to expect in the coming carbon storage boom, including more on the potential benefits and hazards of CCS, read James’s full story here.

This facility in Iceland uses mineral storage deep underground to lock away carbon dioxide that’s been vacuumed out of the atmosphere. See all the photos in this story from 2022

On the side of a road stands a gogoro power station with an enel x system box on the side. Each of the four network station units holds 30 batteries.
GOGORO

Another thing

When an earthquake struck Taiwan in April, the electrical grid faced some hiccups—and an unlikely hero quickly emerged in the form of battery-swap stations for electric scooters. In response to the problem, a group of stations stopped pulling power from the grid until it could recover. 

For more on how Gogoro is using battery stations as a virtual power plant to support the grid, check out my colleague Zeyi Yang’s latest story. And if you need a catch-up, check out this explainer on what a virtual power plant is and how it works

Keeping up with climate  

New York was set to implement congestion pricing, charging cars that drove into the busiest part of Manhattan. Then the governor put that plan on hold indefinitely. It’s a move that reveals just how tightly Americans are clinging to cars, even as the future of climate action may depend on our loosening that grip. (The Atlantic)

Speaking of cars, preparations in Paris for the Olympics reveal what a future with fewer of them could look like. The city has closed over 100 streets to vehicles, jacked up parking rates for SUVs, and removed tens of thousands of parking spots. (NBC News)

An electric lawnmower could be the gateway to a whole new world. People who have electric lawn equipment or solar panels are more likely to electrify other parts of their homes, like heating and cooking. (Canary Media)

Companies are starting to look outside the battery. From massive moving blocks to compressed air in caverns, energy storage systems are getting weirder as the push to reduce prices intensifies. (Heatmap)

Rivian announced updated versions of its R1T and R1S vehicles. The changes reveal the company’s potential path toward surviving in a difficult climate for EV makers. (Tech Crunch)

First responders in the scorching southwestern US are resorting to giant ice cocoons to help people suffering from extreme heat. (New York Times)

→ Here’s how much heat your body can take. (MIT Technology Review)

One oil producer is getting closer to making what it calls “net-zero oil” by pumping captured carbon dioxide down into wells to get more oil out. The implications for the climate and the future of fossil fuels in our economy are … complicated. (Cipher)

How Gogoro’s swap-and-go scooter batteries can strengthen the grid

By: Zeyi Yang
12 June 2024 at 06:00

This story first appeared in China Report, MIT Technology Review’s newsletter about technology in China. Sign up to receive it in your inbox every Tuesday.

If you’ve ever been to Taiwan, you’ve likely run into Gogoro’s green-and-white battery-swap stations in one city or another. With 12,500 stations around the island, Gogoro has built a sweeping network that allows users of electric scooters to drop off an empty battery and get a fully charged one immediately. Gogoro is also found in China, India, and a few other countries.
 
This morning, I published a story on how Gogoro’s battery-swap network in Taiwan reacted to emergency blackouts after the 7.4 magnitude earthquake there this April. I talked to Horace Luke, Gogoro’s cofounder and CEO, to understand how in three seconds, over 500 Gogoro battery-swap locations stopped drawing electricity from the grid, helping stabilize the power frequency.
 
Gogoro’s battery stations acted like something called a virtual power plant (VPP), a new idea that’s becoming adopted around the world as a way to stitch renewable energy into the grid. The system draws energy from distributed sources like battery storage or small rooftop solar panels and coordinates those sources to increase supply when electricity demand peaks. As a result, it reduces the reliance on traditional coal or gas power plants.
 
There’s actually a natural synergy between technologies like battery swapping and virtual power plants (VPP). Not only can battery-swap stations coordinate charging times with the needs of the grid, but the idle batteries sitting in Gogoro’s stations can also become an energy reserve in times of emergency, potentially feeding energy back to the grid. If you want to learn more about how this system works, you can read the full story here.

Two graphs showing how Gogoro's battery-swap charging stopped consuming electricity when the power frequency dropped below normal levels in April.
Statistics shared by Gogoro and Enel X show how its battery-swap stations automatically stopped charging batteries on April 3 and April 15, when there were power outages caused by the earthquake.
GOGORO

When I talked to Gogoro’s Luke for this story, I asked him: “At what point in the company’s history did you come up with the idea to use these batteries for VPP networks?”
 
To my surprise, Luke answered: “Day one.”
 
As he explains, Gogoro was actually not founded to be an electric-scooter company; it was founded to be a “smart energy” company. 

“We started with the thesis of how smart energy, through portability and connectivity, can enable many use case scenarios,” Luke says. “Transportation happens to be accounting for something like 27% or 28% of your energy use in your daily life.” And that’s why the company first designed the batteries for two-wheeled vehicles, a popular transportation option in Taiwan and across Asia.
 
Having succeeded in promoting its scooters and the battery-swap charging method in Taiwan, it is now able to explore other possible uses of these modular, portable batteries—more than 1.4 million of which are in circulation at this point. 
 
“Think of smart, portable, connected energy like a propane tank,” Luke says. Depending on their size,  propane tanks can be used to cook in the wild or to heat a patio. If lithium batteries can be modular and portable in a similar way, they can also serve many different purposes.

Using them in VPP programs that protect the grid from blackouts is one; beyond that, in Taipei City, Gogoro has worked with the local government to build energy backup stations for traffic lights, using the same batteries to keep the lights running in future blackouts. The batteries can also be used as backup power storage for critical facilities like hospitals. When a blackout happens, battery storage can release electricity much faster than diesel generators, keeping the impact at a minimum.

None of this would be possible without the recent advances that have made batteries more powerful and efficient. And it was clear from our conversation that Luke is obsessed with batteries—the long way the technology has come, and their potential to address a lot more energy use cases in the future.

“I still remember getting my first flashlight when I was a little kid. That button just turned the little lightbulb on and off. And that was what was amazing about batteries at the time,” says Luke. “Never did people think that AA batteries were going to power calculators or the Walkman. The guy that invented the alkaline battery never thought that. We’ll continue to take that creativity and apply it to portable energy, and that’s what inspires us every day.”

What other purposes do you think portable lithium batteries like the ones made by Gogoro could have? Let me know your ideas by writing to zeyi@technologyreview.com.


Now read the rest of China Report

Catch up with China

1. Far-right parties won big in the latest European Parliament elections, which could push the EU further toward a trade war with China. (Nikkei Asia $)
 
2. Volvo has started moving some of its manufacturing capacity from China to Belgium in order to avoid the European Union tariffs on Chinese imports. (The Times $)
 
3. Some major crypto exchanges have withdrawn from applying for business licenses in Hong Kong after the city government clarified that it doesn’t welcome businesses that offer crypto services to mainland China. (South China Morning Post $)
 
4. NewsBreak, the most downloaded news app in the US, does most of its engineering work in China. The app has also been found to use AI tools to make up local news that never happened. (Reuters $)
 
5. The Australian government ordered a China-linked fund to reduce its investment in an Australian rare-earth-mining company. (A/symmetric)
 
6. China just installed the largest offshore wind turbine in the world. It’s designed to generate enough power in a year for around 36,000 households. (Electrek)
 
7. Four college instructors from Iowa were stabbed on a visit to northern China. While the motive and identity of the assailant are still unknown, the incident has been quickly censored on the Chinese internet. (BBC)

Lost in translation

Qian Zhimin, a Chinese businesswoman who fled the country in 2017 after raising billions of dollars from Chinese investors in the name of bitcoin investments, was arrested in London and is facing a trial in October this year, according to the Chinese publication Caijing. In the early 2010s, when the cryptocurrency first became known in China, Qian’s company lured over 128,000 retail investors, predominantly elderly people, to buy fraudulent investment products that bet on the price of bitcoins and gadgets like smart bracelets that allegedly could also mine bitcoins. 
 
After the scam was exposed, Qian escaped to the UK with a fake passport. She controls over 61,000 bitcoins, now worth nearly $4 billion, and has been trying to liquidate them by buying properties in London. But those attempts caught the attention of anti-money-laundering authorities in the UK. With her trial date approaching, the victims in China are hoping to work with the UK jurisdiction to recover their assets.

One more thing

I know one day we will see self-driving vehicles racing each other and cutting each other off, but I didn’t expect it to happen so soon with two package delivery robots in China. Maybe it’s just their look, but it seems cuter than when human drivers do the same thing?

TBH, I was expecting a world where unmanned delivery vehicles racing each other on busy streets to come maybe 5 yrs from now, but JD & its subsidiary Dada are making it happen w/o hitting anything

RIP to China's delivery ppl pic.twitter.com/Ae1Wy4mWAj

— tphuang (@tphuang) June 9, 2024

The world’s on the verge of a carbon storage boom

12 June 2024 at 05:00

Pump jacks and pipelines clutter the Elk Hills oil field of California, a scrubby stretch of land in the southern Central Valley that rests above one of the nation’s richest deposits of fossil fuels.

Oil production has been steadily declining in the state for decades, as tech jobs have boomed and legislators have enacted rigorous environmental and climate rules. Companies, towns, and residents across Kern County, where the poverty rate hovers around 18%, have grown increasingly desperate for new economic opportunities.

Late last year, California Resources Corporation (CRC), one of the state’s largest oil and gas producers, secured draft permits from the US Environmental Protection Agency to develop a new type of well in the oil field, which it asserts would provide just that. If the company gets final approval from regulators, it intends to drill a series of boreholes down to a sprawling sedimentary formation roughly 6,000 feet below the surface, where it will inject tens of millions of metric tons of carbon dioxide to store it away forever. 

They’re likely to become California’s first set of what are known as Class VI wells, designed specifically for sequestering the planet-warming greenhouse gas. But many, many similar carbon storage projects are on the way across the state, the US, and the world—a trend driven by growing government subsidies, looming national climate targets, and declining revenue and growth in traditional oil and gas activities.

Since the start of 2022, companies like CRC have submitted nearly 200 applications in the US alone to develop wells of this new type. That offers one of the clearest signs yet that capturing the carbon dioxide pollution from industrial and energy operations instead of releasing it into the atmosphere is about to become a much bigger business. 

Proponents hope it’s the start of a sort of oil boom in reverse, kick-starting a process through which the world will eventually bury more greenhouse gas than it adds to the atmosphere. They argue that embracing carbon capture and storage (CCS) is essential to any plan to rapidly slash emissions. This is, in part, because retrofitting the world’s massive existing infrastructure with carbon dioxide–scrubbing equipment could be faster and easier than rebuilding every power plant and factory. CCS can be a particularly helpful way to cut emissions in certain heavy industries, like cement, fertilizer, and paper and pulp production, where we don’t have scalable, affordable ways of producing crucial goods without releasing carbon dioxide. 

“In the right context, CCS saves time, it saves money, and it lowers risks,” says Julio Friedmann, chief scientist at Carbon Direct and previously the principal deputy assistant secretary for the Department of Energy’s Office of Fossil Energy.

But opponents insist these efforts will prolong the life of fossil-fuel plants, allow air and water pollution to continue, and create new health and environmental risks that could disproportionately harm disadvantaged communities surrounding the projects, including those near the Elk Hills oil field.

“It’s the oil majors that are proposing and funding a lot of these projects,” says Catherine Garoupa, executive director of the Central Valley Air Quality Coalition, which has tracked a surge of applications for carbon storage projects throughout the district. “They see it as a way of extending business as usual and allowing them to be carbon neutral on paper while still doing the same old dirty practices.”

A slow start

The US federal government began overseeing injection wells in the 1970s. A growing number of companies had begun injecting waste underground, sparking a torrent of water pollution lawsuits and the passage of several major laws designed to ensure clean drinking water. The EPA developed standards and rules for a variety of wells and waste types, including deep Class I wells for hazardous or even radioactive refuse and shallower Class V wells for non-hazardous fluids.

In 2010, amid federal efforts to create incentives for industries to capture more carbon dioxide, the agency added Class VI wells for CO2 sequestration. To qualify, a proposed well site must have the appropriate geology, with a deep reservoir of porous rock that can accommodate carbon dioxide molecules sitting below a layer of nonporous “cap rock” like shale. The reservoir also needs to sit well below any groundwater aquifers, so that it won’t contaminate drinking water supplies, and it must be far enough from fault lines to reduce the chances that earthquakes might crack open pathways for the greenhouse gas to escape. 

The carbon sequestration program got off to a slow start. As of late 2021, there were only two Class VI injection wells in operation and 22 applications pending before regulators.

But there’s been a flurry of proposals since—both to the EPA and to the three states that have secured permission to authorize such wells themselves, which include North Dakota, Wyoming, and Louisiana. The Clean Air Task Force, a Boston-based energy policy think tank keeping track of such projects, says there are now more than 200 pending applications.

What changed is the federal incentives. The Inflation Reduction Act of 2022 dramatically boosted the tax credits available for permanently storing carbon dioxide in geological formations, bumping it up from $50 a ton to $85 when it’s captured from industrial and power plants. The credit rose from $50 to $180 a ton when the greenhouse gas is sourced from direct-air-capture facilities, a different technology that sucks greenhouse gas out of the air. Tax credits allow companies to directly reduce their federal tax obligations, which can cover the added expense of CCS across a growing number of sectors.

The separate Bipartisan Infrastructure Law also provided billions of dollars for carbon capture demonstration and pilot projects.

A tax credit windfall 

CRC became an independent company in 2014, when Occidental Petroleum, one of the world’s largest oil and gas producers, spun it off along with many of its California assets. But the new company quickly ran into financial difficulties, filing for bankruptcy protection in 2020 amid plummeting energy demand during the early stages of the covid-19 pandemic. It emerged several months later, after restructuring its debt, converting loans into equity, and raising new lines of credit. 

The following year, CRC created a carbon management subsidiary, Carbon TerraVault, seizing an emerging opportunity to develop a new business around putting carbon dioxide back underground, whether for itself or for customers. The company says it was also motivated by the chance to “help advance the energy transition and curb rising global temperatures at 1.5 °C.”

CRC didn’t respond to inquiries from MIT Technology Review.

In its EPA application the company, based in Long Beach, California, says that hundreds of thousands of tons of carbon dioxide would initially be captured each year from a gas treatment facility in the Elk Hills area as well as a planned plant designed to produce hydrogen from natural gas. The gas is purified and compressed before it’s pumped underground.

The company says the four wells for which it has secured draft permits could store nearly 1.5 million tons of carbon dioxide per year from those and other facilities, with a total capacity of 38 million tons over 26 years. CRC says the projects will create local jobs and help the state meet its pressing climate targets.

“We are committed to supporting the state in reaching carbon neutrality and developing a more sustainable future for all Californians,” Francisco Leon, chief executive of CRC, said of the draft EPA decision in a statement. 

Those wells, however, are just the start of the company’s carbon management plans: Carbon TerraVault has applied to develop 27 additional wells for carbon storage across the state, including two more at Elk Hills, according to the EPA’s permit tracker. If those are all approved and developed, it would transform the subsidiary into a major player in the emerging business of carbon storage—and set it up for a windfall in federal tax credits. 

Carbon sequestration projects can qualify for 12 years of US subsidies. If Carbon TerraVault injects half a million tons of carbon dioxide into each of the 31 wells it has applied for over that time period, the projects could secure tax credits worth more than $15.8 billion.

That figure doesn’t take inflation into account and assumes the company meets the most stringent requirements of the law and sources all the carbon dioxide from industrial facilities and power plants. The number could rise significantly if the company injects more than that amount into wells, or if a significant share of the carbon dioxide is sourced through direct air capture. 

Chevron, BP, ExxonMobil, and Archer Daniels Midland, a major producer of ethanol, have also submitted Class VI well applications to the EPA and could be poised to secure significant IRA subsidies as well.

To be sure, it takes years to secure regulatory permits, and not every proposed project will move forward in the end. The companies involved will still need to raise financing, add carbon capture equipment to polluting facilities, and in many cases build out carbon dioxide pipelines that require separate approvals. But the increased IRA tax credits could drive as much as 250 million metric tons of additional annual storage or use of carbon dioxide in the US by 2035, according to the latest figures from the Princeton-led REPEAT Project.

“It’s a gold rush,” Garoupa says. “It’s being shoved down our throats as ‘Oh, it’s for climate goals.’” But if we’re “not doing it judiciously and really trying to achieve real emissions reductions first,” she adds, it’s merely a distraction from the other types of climate action needed to prevent dangerous levels of warming. 

Carbon accounting

Even if CCS can help drive down emissions in the aggregate, the net climate benefits from any given project will depend on a variety of factors, including how well it’s developed and run—and what other changes it brings about throughout complex, interconnected energy systems over time.

Notably, adding carbon capture equipment to a plant doesn’t trap all the climate pollution. Project developers are generally aiming for around 90%. So if you build a new project with CCS, you’ve increased emissions, not cut them, relative to the status quo.

In addition, the carbon capture process requires a lot of power to run, which may significantly increase emissions of greenhouse gas and other pollutants elsewhere by, for example, drawing on additional generation from natural-gas plants on the grid. Plus, the added tax incentives may make it profitable for a company to continue operating a fossil-fuel plant that it would otherwise have shut down or to run the facilities more hours of the day to generate more carbon dioxide to bury. 

All the uncaptured emissions associated with those changes can reduce, if not wipe out, any carbon benefits from incorporating CCS, says Danny Cullenward, a senior fellow with the Kleinman Center for Energy Policy at the University of Pennsylvania.

But none of that matters as far as the carbon storage subsidies are concerned. Businesses could even use the savings to expand their traditional oil and gas operations, he says.

“It’s not about the net climate impact—it’s about the gross tons you stick under ground,” Cullenward says of the tax credits.

A study last year raised a warning about how that could play out in the years to come, noting that the IRA may require the US to provide hundreds of billions to trillions of dollars in tax credits for power plants that add CCS. Under the scenarios explored, those projects could collectively deliver emissions reductions of as much as 24% or increases as high as 82%. The difference depends largely on how much the incentives alter energy production and the degree to which they extend the life of coal and natural-gas plants.

Coauthor Emily Grubert, an associate professor at Notre Dame and a former deputy assistant secretary at the Department of Energy, stressed that regulators must carefully consider these complex, cascading emissions impacts when weighing whether to approve such proposals.

“Not taking this seriously risks potentially trillions of dollars and billions of tonnes of [greenhouse-gas] emissions, not to mention the trust and goodwill of the American public, which is reasonably skeptical of these potentially critically important technologies,” she wrote in an op-ed in the industry outlet Utility Dive.

Global goals

Other nations and regions are also accelerating efforts to capture and store carbon as part of their broader efforts to lower emissions and combat climate change. The EU, which has dedicated tens of billions of euros to accelerating the development of CCS, is working to develop the capacity to store 50 million tons of carbon dioxide per year by 2030, according to the Global CCS Institute’s 2023 industry report.

Likewise, Japan hopes to sequester 240 million tons annually by 2050, while Saudi Arabia is aiming for 44 million tons by 2035. The industry trade group said there were 41 CCS projects in operation around the world at the time, with another 351 under development.

A handful of US facilities have been capturing carbon dioxide for decades for a variety of uses, including processing or producing natural gas, ammonia, and soda ash, which is used in soaps, cosmetics, baking soda, and other goods.

But Ben Grove, carbon storage manager at the Clean Air Task Force, says the increased subsidies in the IRA made CCS economical for many industry segments in the US, including: chemicals, petrochemicals, hydrogen, cement, oil, gas and ethanol refineries, and steel, at least on the low end of the estimated cost ranges. 

In many cases, the available subsidies still won’t fully cover the added cost of CCS in power plants and certain other industrial facilities. But the broader hope is that these federal programs will help companies scale up and optimize these processes over time, driving down the cost of CCS and making it feasible for more sectors, Grove says.

‘Against all evidence’

In addition to the gas treatment and hydrogen plants, CRC says, another source for the captured carbon dioxide could eventually include its own Elk Hills Power Plant, which runs on natural gas extracted from the oil field. The company has said it intends to retrofit the facility to capture 1.5 million tons of emissions a year.

Still other sources could include renewable fuels plants, which may mean biofuel facilities, steam generators, and a proposed direct-air-capture plant that would be developed by the carbon-removal startup Avnos, according to the EPA filing. Carbon TerraVault is part of a consortium, which includes Avnos, Climeworks, Southern California Gas Company, and others, that has proposed developing a direct-air-capture hub in Kern County, where the Elk Hills field is located. Last year, the Department of Energy awarded the so-called California DAC Hub nearly $12 million to conduct engineering design studies for direct-air-capture facilities.

CCS may be a helpful tool for heavy industries that are really hard to clean up, but that’s largely not what CRC has proposed, says Natalia Ospina, legal director at the Center on Race, Poverty & the Environment, an environmental-justice advocacy organization in Delano, California. 

“The initial source will be the Elk Hills oil field itself and the plant that refines gas in the first place,” she says. “That is just going to allow them to extend the life of the oil and gas industry in Kern County, which goes against all the evidence in front of us in terms of how we should be addressing the climate crisis.”

Natalia Ospina
Natalia Ospina, legal director at the Center on Race, Poverty & the Environment.
NATALIA OSPINA

Critics of the project also fear that some of these facilities will continue producing other types of pollution, like volatile organic compounds and fine particulate matter, in a region that’s already heavily polluted. Some analyses show that adding a carbon capture process reduces those other pollutants in certain cases. But Ospina argues that oil and gas companies can’t be trusted to operate such projects in ways that reduce pollution to the levels necessary to protect neighboring communities.

‘You need it’

Still, a variety of studies, from the state level to the global, conclude that CCS may play an essential role in cutting greenhouse-gas emissions fast enough to moderate the global dangers of climate change.

California is banking heavily on capturing carbon from plants or removing it from the air through various means to meet its 2045 climate neutrality goal, aiming for 20 million metric tons by 2030 and 100 million by midcentury. The Air Resources Board, the state’s main climate regulator, declared that “there is no path to carbon neutrality without carbon removal and sequestration.” 

Recent reports from the UN’s climate panel have also stressed that carbon capture could be a “critical mitigation option” for cutting emissions from cement and chemical production. The body’s modeling study scenarios that limit global warming to 1.5 °C over preindustrial levels rely on significant levels of CCS, including tens to hundreds of billions of tons of carbon dioxide captured this century from plants that use biomatter to produce heat and electricity—a process known as BECCS.

Meeting global climate targets without carbon capture would require shutting down about a quarter of the world’s fossil-fuel plants before they’ve reached the typical 50-year life span, the International Energy Agency notes. That’s an expensive proposition, and one that owners, investors, industry trade groups, and even nations will fiercely resist.

“Everyone keeps coming to the same conclusion, which is that you need it,” Friedmann says.

Lorelei Oviatt, director of the Kern County Planning and Natural Resources Department, declined to express an opinion about CRC’s Elk Hills project while local regulators are reviewing it. But she strongly supports the development of CCS projects in general, describing it as a way to help her region restore lost tax revenue and jobs as “the state puts the area’s oil companies out of business” through tighter regulations.

County officials have proposed the development of a more than 4,000-acre carbon management park, which could include hydrogen, steel, and biomass facilities with carbon-capture components. An economic analysis last year found that the campus and related activities could create more than 22,000 jobs, and generate more than $88 million in sales and property taxes for the economically challenged county and cities, under a high-end scenario. 

Oviatt adds that embracing carbon capture may also allow the region to avoid the “stranded asset” problem, in which major employers are forced to shut down expensive power plants, refineries, and extraction wells that could otherwise continue operating for years to decades.

“We’re the largest producer of oil in California and seventh in the country; we have trillions and trillions of dollars in infrastructure,” she says. “The idea that all of that should just be abandoned does not seem like a thoughtful way to design an economy.”

Carbon dioxide leaks

But critics fear that preserving it simply means creating new dangers for the disproportionately poor, unhealthy, and marginalized communities surrounding these projects.

In a 2022 letter to the EPA, the Center for Biological Diversity raised the possibility that the sequestered carbon dioxide could leak out of wells or pipelines, contributing to climate change and harming local residents.

These concerns are not without foundation.

In February 2020, Denbury Enterprises’ Delta pipeline, which stretches more than 100 miles between Mississippi and Louisiana, ruptured and released more than 30,000 barrels’ worth of compressed, liquid CO2 gas near the town of Satartia, Mississippi. 

The leak forced hundreds of people to evacuate their homes and sent dozens to local hospitals, some struggling to breathe and others unconscious and foaming at the mouth, as the Huffington Post detailed in an investigative piece. Some vehicles stopped running as well: the carbon dioxide in air displaced oxygen, which is essential to the combustion in combustion engines.

There have also been repeated carbon dioxide releases over the last two decades at an enhanced oil recovery project at the Salt Creek oil field in Wyoming. Starting in the late 1800s, a variety of operators have drilled, abandoned, sealed, and resealed thousands of wells at the site, with varying degrees of quality, reliability, and documentation, according to the Natural Resources Defense Council. A sustained leak in 2004 emitted 12,000 cubic feet of the gas per day, on average, while a 2016 release of carbon dioxide and methane forced a school near the field to relocate its classes for the remainder of the year.

Some fear that similar issues could arise at Elk Hills, which could become the nation’s first carbon sequestration project developed in a depleted oil field. Companies have drilled and operated thousands of wells over decades at the site, many of which have sat idle and unplugged for years, according to a 2020 investigation by the Los Angeles Times and the Center for Public Integrity.

Ospina argues that CRC and county officials are asking the residents of Kern County to act as test subjects for unproven and possibly dangerous CCS use cases, compounding the health risks facing a region that is already exposed to too many.

Whether the Elk Hills project moves forward or not, the looming carbon storage boom will soon force many other areas to wrestle with similar issues. What remains to be seen is whether companies and regulators can adequately address community fears and demonstrate that the climate benefits promised in modeling studies will be delivered in reality. 

Update: This story was updated to remove a photo that was not of the Elk Hills oil field and had been improperly captioned.

How battery-swap networks are preventing emergency blackouts

By: Zeyi Yang
11 June 2024 at 05:00

On the morning of April 3, Taiwan was hit by a 7.4 magnitude earthquake. Seconds later, hundreds of battery-swap stations in Taiwan sensed something else: the power frequency of the electric grid took a sudden drop, a signal that some power plants had been disconnected in the disaster. The grid was now struggling to meet energy demand. 

These stations, built by the Taiwanese company Gogoro for electric-powered two-wheeled vehicles like scooters, mopeds, and bikes, reacted immediately. According to numbers provided by the company, 590 Gogoro battery-swap locations (some of which have more than one swap station) stopped drawing electricity from the grid, lowering local demand by a total six megawatts—enough to power thousands of homes. It took 12 minutes for the grid to recover, and the battery-swap stations then resumed normal operation.

Gogoro is not the only company working on battery-swapping for electric scooters (New York City recently launched a pilot program to give delivery drivers the option to charge this way), but it’s certainly one of the most successful. Founded in 2011, the firm has a network of over 12,500 stations across Taiwan and boasts over 600,000 monthly subscribers who pay to swap batteries in and out when required. Each station is roughly the size of two vending machines and can hold around 30 scooter batteries.

Now the company is putting the battery network to another use: Gogoro has been working with Enel X, an Italian company, to incorporate the stations into a virtual power plant (VPP) system that helps the Taiwanese grid stay more resilient in emergencies like April’s earthquake. 

Battery-swap stations work well for VPP programs because they offer so much more flexibility than charging at home, where an electric-bike owner usually has just one or two batteries and thus must charge immediately after one runs out. With dozens of batteries in a single station as a demand buffer, Gogoro can choose when it charges them—for instance, doing so at night when there’s less power demand and it’s cheaper. In the meantime, the batteries can give power back to the grid when it is stressed—hence the comparison to power plants.

“What is beautiful is that the stations’ economic interest is aligned with the grid—the [battery-swap companies] have the incentive to time their charges during the low utilization period, paying the low electricity price, while feeding electricity back to the grid during peak period, enjoying a higher price,” says S. Alex Yang, a professor of management science at London Business School. 

Gogoro is uniquely positioned to become a vital part of the VPP network because “there’s a constant load in energy, and then at the same time, we’re on standby that we can either stop taking or giving back [power] to the grid to provide stability,” Horace Luke, cofounder and CEO of Gogoro, tells MIT Technology Review

Luke estimates that only 90% of Gogoro batteries are actually on the road powering scooters at any given time, so the rest, sitting on the racks waiting for customers to pick up, become a valuable resource that can be utilized by the grid. 

Today, out of the 2,500 Gogoro locations, over 1,000 are part of the VPP program. Gogoro promises that the system will automatically detect emergencies and, in response, immediately lower its consumption by a certain total amount.

Which stations get included in the VPP depends on where they are and how much capacity they have. A smaller station right outside a metro stop—meaning high demand and low supply—probably can’t afford to stop charging during an emergency because riders could come looking for a battery soon. But a megastation with 120 batteries in a residential area is probably safe to stop charging batteries for a while.

Plus, the entire station doesn’t go dark—Gogoro has a built-in system that decides which or how many batteries in a station stop charging. “We know exactly which batteries to spin down, which station to spin down, how much to spin down,” says Luke. “That was all calculated in real time in the back side of the server.” It can even consolidate the power left in several batteries into one, so a customer who comes in can still leave with a fully charged battery even if the whole system is operating below capacity.

The earthquake and its aftermath in Taiwan this year put the VPP stations to the test—but also showed the system’s strength. On April 15, 12 days after the initial earthquake, the grid in Taiwan was still recovering from the damage when another power drop happened. This time, 818 Gogoro locations reacted in five seconds, reducing power consumption by 11 megawatts for 30 minutes.

Numbers like 6 MW and 11 MW are “not a trivial amount of power but still substantially smaller than a centralized power plant,” says Joshua Pearce, an engineering professor at Western University in Ontario, Canada. For comparison, Taiwan lost 3,200 MW of power supply right after the April earthquake, and the gap was mostly filled by solar power, centralized battery storage, and hydropower. But the entire Taiwanese VPP network combined, which has reached a capacity of 1,350 MW, can make a significant difference. “It helps the grid maintain stability during disasters. The more smart loads there are on the grid, the more resilient it is,” he says. 

However, the potential of these battery-swap stations has not been fully achieved yet; the majority of the stations have not started giving energy back to the grid. 

“The tech system is ready, but the business and economics are not ready,” Luke says. There are 10 Gogoro battery-swapping stations that can return electricity to the grid in a pilot program, but other stations haven’t received the technological update. 

Upgrading stations to bi-directional charging makes economic sense only if Gogoro can profit from selling the electricity back. While the Taiwanese state-owned utility company currently allows private energy generators like solar farms to sell electricity to the grid at a premium, it hasn’t allowed battery-storage companies like Gogoro to do so. 

This challenge is not unique to Taiwan. Incorporating technologies like VPP requires making fundamental changes to the grid, which won’t happen without policy support. “The technology is there, but the practices are being held back by antiquated utility business models where they provide all electric services,” says Pearce. “Fair policies are needed to allow solar energy and battery owners to participate in the electric market for the best interest of all electricity consumers.”

Correction: The story has been updated to clarify that 90%, not 10%, of Gogoro’s batteries are on the road.

DARPA’s planned nuclear rocket would use enough fuel to build a bomb

10 June 2024 at 14:56
A lump of rock, next to the periodic table entry for uranium, all against a black background.

Enlarge (credit: OLE-CNX)

High-assay low-enriched uranium (HALEU) has been touted as the go-to fuel for powering next-gen nuclear reactors, which include the sodium-cooled TerraPower or the space-borne system powering Demonstration Rocket for Agile Cislunar Operations (DRACO). That’s because it was supposed to offer higher efficiency while keeping uranium enrichment “well below the threshold needed for weapons-grade material,” according to the US Department of Energy.

This justified huge government investments in HALEU production in the US and UK, as well as relaxed security requirements for facilities using it as fuel. But now, a team of scientists has published an article in Science that argues that you can make a nuclear bomb using HALEU.

“I looked it up and DRACO space reactor will use around 300 kg of HALEU. This is marginal, but I would say you could make one a weapon with that much,” says Edwin Lyman, the director of Nuclear Power Safety at the Union of Concerned Scientists and co-author of the paper.

Read 15 remaining paragraphs | Comments

University of Arkansas Leads Initiative to Improve Security of Solar Inverters

By: Alan J
7 June 2024 at 10:35

University of Arkansas Solar Initiative Solar Panels

The University of Arkansas is spearheading a new collaborative effort with researchers and industry partners to address the rising risks and challenges associated with the deployment of solar systems. Historically, little attention has been paid to the risks within solar systems, as they weren't commonly deployed and most solar inverters were not connected to wider networks. However, the potential risks grow as more solar panels are installed and inverters become more advanced. Solar inverters act as the bridging interface between solar panels and the grid, with newer models allowing for monitoring and control. Solar inverters that are not updated or secure enough could potentially be intercepted and manipulated by attackers, allowing them to embed malicious code that could spread into the larger power system.

University of Arkansas Solar Inverter Cybersecurity Initiative

The new project led by the University of Arkansas is funded by the U.S. Department of Energy's Solar Energy Technologies Office (SETO) and aims to strengthen the cybersecurity measures of solar inverters. Solar inverters are used to convert direct current (DC) generated from solar panels into alternating current (AC) that can be used in households and within the energy grid. This effort involves collaboration among multiple universities, laboratories, and industry partners to develop custom-designed controls infused with multiple layers of cybersecurity protocols. [caption id="attachment_75768" align="alignnone" width="800"]University of Arkansas Solar Inverter Cybersecurity Initiative Source: news.uark.edu[/caption] Researchers from these groups dismantled conventional commercial solar inverters, stripping away existing controls and technology. They then integrated work from different partners while implementing custom-designed controls designed with multiple additional layers of cybersecurity protocols. The University of Arkansas group then took to solar farms in order to subject these modified inverters to real-world conditions to test them and demonstrate the practicality of their cybersecurity measures. The collaborative partners for this project include the University of Georgia, Texas A&M Kingsville, University of Illinois Chicago, Argonne National Laboratory, National Renewable Energy Laboratory, General Electric Research, Ozarks Electric, and Today's Power Inc. The collaborative efforts from these groups is a further step to fortifying not only the cybersecurity resilience of solar inverters but also to secure the broader landscape of renewable energy technologies.

Securing Renewable Energy and Electric Grids

As electric grids become increasingly digitized and connected, securing these grids becomes a top priority for the U.S. Department of Energy (DOE). The department has stated that while some cyberattacks target information technology (IT) systems, attacks on operating technology (OT) devices such as solar photovoltaic inverters could have potential physical impact, such as loss of power and creation of fires. The department cited an incident in March 2019 in which hackers managed to breach through a utility’s web portal firewall. The attack caused random interruptions to the visibility of segments of the grid from its operators for a period of 10 hours. The DOE's Solar Energy Technologies Office (SETO) is working to ensure that the electric grid is secure and capable of integrating more solar power systems and other distributed energy resources. The agency developed a roadmap for Photovoltaic Cybersecurity, supports ongoing efforts in Distributed Energy Resources (DER) cybersecurity standards, and participates in the Office of Energy Efficiency and Renewable Energy's Cybersecurity Multiyear Program Plan, along with the Department of Energy's broader cybersecurity research activities. The Solar Energy Technologies Office has recommended the use of dynamic survival strategy based on defense-in-depth measures that functional as additional layers of security to secure individual components as well as entire systems. These layers include installing anti-virus software on DER systems (solar inverters and battery controllers) and maintaining virus protection and detection mechanisms on the firewalls and servers integrating these individual systems to the broader system of grid operation. The Office admits that implementation of this strategy into DER technologies can be complex, with different owners, operators, and systems typically involved, but maintains the strategy's importance in reducing potential cyberattacks. Media Disclaimer: This report is based on internal and external research obtained through various means. The information provided is for reference purposes only, and users bear full responsibility for their reliance on it. The Cyber Express assumes no liability for the accuracy or consequences of using this information.

"This string of hottest months will be remembered as comparatively cold"

By: kliuless
7 June 2024 at 04:11
Carbon dioxide levels in the atmosphere are surging "faster than ever" to beyond anything humans ever experienced, officials say - "Not only is CO2 now at the highest level in millions of years, it is also rising faster than ever."

Secretary-General's special address on climate action "A Moment of Truth" [yt] - "Climate change is the mother of all stealth taxes paid by everyday people and vulnerable countries and communities. Meanwhile, the Godfathers of climate chaos – the fossil fuel industry – rake in record profits and feast off trillions in taxpayer-funded subsidies."
Fourth and finally, we must directly confront those in the fossil fuel industry who have shown relentless zeal for obstructing progress – over decades. Billions of dollars have been thrown at distorting the truth, deceiving the public, and sowing doubt. I thank the academics and the activists, the journalists and the whistleblowers, who have exposed those tactics – often at great personal and professional risk. I call on leaders in the fossil fuel industry to understand that if you are not in the fast lane to clean energy transformation, you are driving your business into a dead end – and taking us all with you... Many in the fossil fuel industry have shamelessly greenwashed, even as they have sought to delay climate action – with lobbying, legal threats, and massive ad campaigns. They have been aided and abetted by advertising and PR companies – Mad Men – remember the TV series - fuelling the madness. I call on these companies to stop acting as enablers to planetary destruction. Stop taking on new fossil fuel clients, from today, and set out plans to drop your existing ones.
World hits streak of record temperatures as UN warns of 'climate hell' - "Coal, oil and gas still provide more than three quarters of the world's energy, with global oil demand remaining strong." India runs power plants flat out to keep cool in heatwave and election - "In the autumn of 2021 and again in the spring of 2022, coal shortages meant many power generators were unable to start up in response to instructions from the grid... Since then, the government has attempted to prevent a repeat by prioritising coal movements across the rail network and accumulating large coal inventories on site at power generators." Despite extreme heat, climate change barely rated a mention in India's elections - "Low voter turnout was attributed to ongoing extreme heat, with temperatures in New Delhi reaching as high as 52.9 degrees Celsius, causing a party leader to faint during an election rally. But the sweltering temperatures did little to drive climate up the agenda." Phoenix Is Facing a Hurricane Katrina of Heat. It's Not Alone. - "You can see the risk here: If you don't have air conditioning, then Phoenix's summer heat quickly changes from unpleasant to deadly... a power failure during a heat wave in Phoenix or any other city will spread the misery far more broadly and kick a Heat Katrina into high gear." (The Heat Wave Scenario That Keeps Climate Scientists Up at Night)[1]
The number of unhoused people in the city has boomed along with the total population, rising 72% in the past six years to nearly 10,000. People experiencing homelessness made up 45% of the county's heat-related deaths last year, compared with 38% for people with housing (the living situation was unknown for the other 17% of deaths). And none of the 156 people who died indoors last year had functioning air conditioning. In 85% of those cases, AC units were present but broken. When temperatures hit 110F for weeks at a stretch, cooling systems can struggle to keep up. Retirees and people living from paycheck to paycheck may not have the money for repairs.
IEA expects global clean energy investment to hit $2 trillion in 2024 - "China is set to account for the largest share of clean energy investment in 2024 with an estimated $675 billion, while Europe is set to account for $370 billion and the United States $315 billion. More spending is focused on solar photovoltaic (PV) than any other electricity generation technology with investment set to grow to $500 billion in 2024 due to falling solar module prices. Global upstream oil and gas investment is expected to increase by 7% in 2024 to $570 billion, following a similar rise in 2023. This was mostly led by national oil companies in the Middle East and Asia, the report said." India to spend up to $385 bln to meet renewable energy target, Moody's Ratings estimates - "However, despite the steady growth in renewable energy, most of which will likely be solar power, Moody's expects coal will play a significant role in electricity generation for the next eight to ten years." US solar installations hit quarterly record, making up 75% of new power added, report says - "Solar accounted for 75% of electricity generation capacity added to the U.S. power grid early this year as installations of panels rose to a quarterly record, according to a report published by Wood Mackenzie and the Solar Energy Industries Association on Thursday. The country's solar industry saw 11.8 gigawatts of new capacity in the first three months of 2024 as electric utilities continued their rapid additions of the renewable power sources, the report said." The Solar Breakthrough That Could Help the U.S. Compete With China - "South Korea's Hanwha Group says it will be the first company to use Lumet's technology. Hanwha's Qcells unit, one of the biggest solar-panel makers outside China, is building a multibillion-dollar solar supply chain in Georgia. The company expects the financial savings and performance gains to help it compete with low-cost products from the world's biggest producer."[2] Giant Batteries Are Transforming the Way the U.S. Uses Electricity - "They're delivering solar power after dark in California and helping to stabilize grids in other states. And the technology is expanding rapidly."[3,4,5] EU wind and solar growth displaces fossil fuel generation, report says - "The additional solar and wind capacity helped push the share of total renewables to 44% of the EU electricity mix in 2023 from 34% in 2019. Meanwhile, a decline in coal and gas generation has pulled the share of fossil fuel generation down to 32.5% from 39%."

This classic game is taking on climate change

6 June 2024 at 04:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

There are two things I love to do at social gatherings: play board games and talk about climate change. Don’t I sound like someone you should invite to your next dinner party?

Given my two great loves, I was delighted to learn about a board game called Catan: New Energies, coming out this summer. It’s a new edition of the classic game Catan, formerly known as Settlers of Catan. This version has players building power plants, fueled by either fossil fuels or renewables. 

So how does an energy-focused edition of Catan stack up against the board game competition, and what does it say about how we view climate technology?

Catan debuted in 1995, and today it’s one of the world’s most popular board games. The original and related products have sold over 45 million copies worldwide. 

Given Catan’s superstar status, I was intrigued to learn late last year that the studio that makes it had plans in the works to release this new version. I quickly got in touch with the game’s co-creator, Benjamin Teuber, to hear more. 

“The whole idea is that energy comes to Catan,” Teuber told me. “Now the question is, which energy comes to Catan?” Power plants help players develop their society more quickly, amassing more of the points needed to win the game. Players can build fossil-fuel plants, represented by little brown tokens. These are less resource-intensive to build, but they produce pollution. Alternatively, players can elect to build renewable-power plants, signified by green tokens, which are costlier but don’t have the same negative effects in the game. 

As a climate reporter, I feel that some elements of the game setup ring true—for example, as players reach higher levels of pollution, disasters become more likely, but there’s still a strong element of chance involved. 

One aspect of the game that didn’t quite match reality was the cost difference between fossil fuels and renewables. Technologies like solar and wind have plummeted in price over the last decade—today, building new renewable projects is generally cheaper than operating existing coal plants in the US.

I asked if the creators had considered having renewables get cheaper over time in the game, and Teuber said the team had actually built an early version with this idea in place, but the whole thing got too complicated. Keeping things simple enough to be playable is a crucial component of game design, Teuber says. 

Teuber also seemed laser focused on not preaching, and it feels as if New Energies goes out of its way not to make players feel bad about climate change. In fact, as a story by NPR about the game pointed out, the phrase “climate change” hardly appears in any of the promotional materials, on the packaging, or in the rules. The catch-all issue in the game’s universe is simply “pollution.” 

Unlike some other climate games, like the 2023 release Daybreak, New Energies isn’t aimed at getting the group to work together to fight against climate change. The setup is the same as in other versions of Catan: the first player to reach 10 victory points wins. In theory, that could be a player who leaned heavily on fossil fuels. 

“It doesn’t feel like the game says, ‘Screw you—we told you, the only way to win is by building green energy,’” Teuber told me. 

However, while players can choose their own pathway to acquiring points, there’s a second possible outcome. If too many players produce too much pollution by building towns, cities, and fossil-fuel power plants, the game ends early in catastrophe. Whoever has done the most to clean up the environment does walk away with the win—something of a consolation prize. 

I got an early copy of the game to test out, and the first time I played, my group polluted too quickly and the game ended early. I ended up taking the win, since I had elected to build only renewable plants. I’ll admit to feeling a bit smug. 

But as I played more, I saw the balance between competition and collaboration. During one game, my group came within a few turns of pollution-driven catastrophe. We turned things around, building more renewable plants and stretching out play long enough for a friend who had been quicker to build her society to cobble together the points she needed to win. 

Our game board after a round of New Energies, with my cat, who acted as our unofficial referee. 
Photo: Casey Crownhart

Board games, or any other media that deals with climate change, will have to walk a fine line between dealing seriously with the crisis at hand and being entertaining enough to engage with. New Energies does that, though I think it makes some concessions toward being playable over being obsessively accurate. 

I wouldn’t recommend using this game as teaching material about climate change, but I suppose that’s not the point. If you’re a fan of Catan, this edition is definitely worth playing, and it’ll be part of my rotation. You can pre-order Catan New Energies here; the release date is June 14. And if you haven’t heard enough of my media musings, stay tuned for an upcoming story about New Energies and other climate-related board games. 


Now read the rest of The Spark

Related reading

Google DeepMind can take a short description or sketch and turn it into a playable video game

Researchers love testing AI by having models play video games. A new model that can play Goat Simulator could be a step toward more useful AI.

Dark Forest shows how advanced cryptography can be used in video games.

Keeping up with climate  

Direct air capture may be getting cheaper and better. Climeworks says that the third generation of its technology can suck up more carbon dioxide from the atmosphere with less energy. (Heatmap)

A Massachusetts town will be home to a new pilot project that basically amounts to a communal heating and cooling system. District energy projects could help energy go farther in cities and densely populated communities. (Associated Press)

Sublime Systems uses an electrochemical process to make cement without the massive emissions footprint. The company just installed its first commercial project in a Boston office park. (Canary Media)

→ According to the Canary story, one of the company’s developers heard about Sublime from a story in our publication! Read my deep dive into the startup from earlier this year. (MIT Technology Review)

A rush of renewable energy to the grid has led to some special periods with ultra-cheap or even free electricity. Experts warn that this could slow further deployment of renewables. (Bloomberg)

Natural disasters, some fueled by climate change, are throwing off medical procedures like fertility treatments, which require specific timing and careful control. (The 19th)

Take an inside look at Apple’s recycling robot, Daisy. The equipment can take apart over a million iPhones per year, but that’s a drop in the bucket given the hundreds of millions discarded annually. (TechCrunch)

Canada’s hydroelectric dams have been running a bit dry, and the country has had to import electricity from the US to make up the difference. It’s just one more example of how changing weather patterns can throw a wrench into climate solutions. (New York Times

Check out five demos from a high-tech energy conference, from batteries that can handle freezing temperatures to turbines that can harness power from irrigation channels. (IEEE Spectrum)

Why bigger EVs aren’t always better

30 May 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

SUVs are taking over the world—larger vehicle models made up nearly half of new car sales globally in 2023, a new record for the segment. 

There are a lot of reasons to be nervous about the ever-expanding footprint of vehicles, from pedestrian safety and road maintenance concerns to higher greenhouse-gas emissions. But in a way, SUVs also represent a massive opportunity for climate action, since pulling the worst gas-guzzlers off the roads and replacing them with electric versions could be a big step in cutting pollution. 

It’s clear that we’re heading toward a future with bigger cars. Here’s what it might mean for the climate, and for our future on the road. 

SUVs accounted for 48% of global car sales in 2023, according to a new analysis from the International Energy Agency. This is a continuation of a trend toward bigger cars—just a decade ago, SUVs only made up about 20% of new vehicle sales. 

Big vehicles mean big emissions numbers. Last year there were more than 360 million SUVs on the roads, and they produced a billion metric tons of carbon dioxide. If SUVs were a country, they’d have the fifth-highest emissions of any nation on the planet—more than Japan. Of all the energy-related emissions growth last year, over 20% can be attributed to SUVs. 

There are several factors driving the world’s move toward larger vehicles. Larger cars tend to have higher profit margins, so companies may be more likely to make and push those models. And drivers are willing to jump on the bandwagon. I understand the appeal—I learned to drive in a huge SUV, and being able to stretch out my legs and float several feet above traffic has its perks. 

Electric vehicles are very much following the trend, with several companies unveiling  larger models in the past few years. Some of these newly released electric SUVs are seeing massive success. The Tesla Model Y, released in 2020, was far and away the most popular EV last year, with over 1.2 million units sold in 2023. The BYD Song (also an SUV) took second place with 630,000 sold. 

Globally, SUVs made up nearly 50% of new EV sales in 2023, compared to just under 20% in 2018, according to the IEA’s Global EV Outlook 2024. There’s also been a shift away from small cars (think the size of the Fiat 500) and toward large ones (similar to the BMW 7-series). 

And big-car obsession is a global phenomenon. The US is the land of the free and the home of the massive vehicles—SUVs made up 65% of new electric-vehicle sales in the country in 2023. But other major markets aren’t all that far behind: in Europe, the share was 52%, and in China, it was 36%. (You can see the above chart broken down by region from the IEA here.)

So it’s clear that we’re clamoring for bigger cars. Now what? 

One way of looking at this whole thing is that SUVs offer up an incredible opportunity for climate action. EVs will reduce emissions over their life span relative to gas-powered versions of the same model, so electrifying the biggest emitters on the roads would have an outsize impact. If all gas-powered and hybrid SUVs sold in 2023 were instead electric vehicles, about 770 million metric tons of carbon dioxide would be avoided over the lifetime of those vehicles, according to the IEA report. That’s equivalent to all of China’s road emissions last year. 

I previously wrote a somewhat hesitant defense of large EVs for this reason—electric SUVs aren’t perfect, but they could still help us address climate change. If some drivers are willing to buy an EV but aren’t willing to downsize their cars, then having larger electric options available could be a huge lever for climate action. 

But there are several very legitimate reasons why not everyone is welcoming the future of massive cars (even electric ones) with open arms. Larger vehicles are harder on roads, making upkeep more expensive. SUVs and other big vehicles are way more dangerous for pedestrians, too. Vehicles with higher front ends and blunter profiles are 45% more likely to cause fatalities in crashes with pedestrians. 

Bigger EVs could also have a huge effect on the amount of mining we’ll need to do to meet demand for metals like lithium, nickel, and cobalt. One 2023 study found that larger vehicles could increase the amount of mining needed more than 50% by 2050, relative to the amount that would be necessary if people drove smaller vehicles. Given that mining is energy intensive and can come with significant environmental harms, it’s not an unreasonable worry. 

New technologies could help reduce the mining we need to do for some materials: LFP batteries that don’t contain nickel or cobalt are quickly growing in market share, especially in China, and they could help reduce demand for those metals.

Another potential solution is reducing the demand for bigger cars in the first place. Policies have historically had a hand in pushing people toward larger cars and could help us make a U-turn on car bloat. Some countries, including Norway and France, now charge more in taxes or registration for larger vehicles. Paris recently jacked up parking rates for SUVs. 

For now, our vehicles are growing, and if we’re going to have SUVs on the roads, then we should have electric options. But bigger isn’t always better. 


Now read the rest of The Spark

Related reading

I’ve defended big EVs in the past—SUVs come with challenges, but electric ones are hands-down better for emissions than gas-guzzlers. Read this 2023 newsletter for more

The average size of batteries in EVs has steadily ticked up in recent years, as I touched on in this newsletter from last year

Electric cars are still cars, and smaller, safer EVs, along with more transit options, will be key to hitting our climate goals, Paris Marx argued in this 2022 op-ed

Keeping up with climate  

We might be underestimating how much power transmission lines can carry. Sensors can give grid operators a better sense of capacity based on factors like temperature and wind speed, and it could help projects hook up to the grid faster. (Canary Media)

North America could be in for an active fire season, though it’s likely not going to rise to the level of 2023. (New Scientist)

Climate change is making some types of turbulence more common, and that could spell trouble for flying. Studying how birds move might provide clues about dangerous spots. (BBC)

The perceived slowdown for EVs in the US is looking more like a temporary blip than an ongoing catastrophe. Tesla is something of an outlier with its recent slump—most automakers saw greater than 50% growth in the first quarter of this year. (Bloomberg)

This visualization shows just how dominant China is in the EV supply chain, from mining materials like graphite to manufacturing battery cells. (Cipher News)

Climate change is coming for our summer oysters. The variety that have been bred to be eaten year round are sensitive to extreme heat, making their future rocky. (The Atlantic)

The US has new federal guidelines for carbon offsets. It’s an effort to fix up an industry that studies and reports have consistently shown doesn’t work very well. (New York Times)

The most stubborn myth about heat pumps is that they don’t work in cold weather. Heat pumps are actually more efficient than gas furnaces in cold conditions. (Wired)

Saudi Arabia Eyes a Future Beyond Oil

29 May 2024 at 00:01
The kingdom is trying to juggle its still-vital petroleum industry with alternative energy sources like wind and solar as it faces pressure to lower carbon emissions.

© Iman Al-Dabbagh for The New York Times

Arrays of solar panels help power the Jazlah Water Desalination plant in Jubail, Saudi Arabia, reducing carbon dioxide emissions.

AI is an energy hog. This is what it means for climate change.

23 May 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Tech companies keep finding new ways to bring AI into every facet of our lives. AI has taken over my search engine results, and new virtual assistants from Google and OpenAI announced last week are bringing the world eerily close to the 2013 film Her (in more ways than one).

As AI has become more integrated into our world, I’ve gotten a lot of questions about the technology’s rising electricity demand. You may have seen the headlines proclaiming that AI uses as much electricity as small countries, that it’ll usher in a fossil-fuel resurgence, and that it’s already challenging the grid.  

So how worried should we be about AI’s electricity demands? Well, it’s complicated. 

Using AI for certain tasks can come with a significant energy price tag. With some powerful AI models, generating an image can require as much energy as charging up your phone, as my colleague Melissa Heikkilä explained in a story from December. Create 1,000 images with a model like Stable Diffusion XL, and you’ve produced as much carbon dioxide as driving just over four miles in a gas-powered car, according to the researchers Melissa spoke to. 

But while generated images are splashy, there are plenty of AI tasks that don’t use as much energy. For example, creating images is thousands of times more energy-intensive than generating text. And using a smaller model that’s tailored to a specific task, rather than a massive, all-purpose generative model, can be dozens of times more efficient. In any case, generative AI models require energy, and we’re using them a lot. 

Electricity consumption from data centers, AI, and cryptocurrency could reach double 2022 levels by 2026, according to projections from the International Energy Agency. Those technologies together made up roughly 2% of global electricity demand in 2022. Note that these numbers aren’t just for AI—it’s tricky to nail down AI’s specific contribution, so keep that in mind when you see predictions about electricity demand from data centers. 

There’s a wide range of uncertainty in the IEA’s projections, depending on factors like how quickly deployment increases and how efficient computing processes get. On the low end, the sector could require about 160 terawatt-hours of additional electricity by 2026. On the higher end, that number might be 590 TWh. As the report puts it, AI, data centers, and cryptocurrency together are likely adding “at least one Sweden or at most one Germany” to global electricity demand. 

In total, the IEA projects, the world will add about 3,500 TWh of electricity demand over that same period—so while computing is certainly part of the demand crunch, it’s far from the whole story. Electric vehicles and the industrial sector will both be bigger sources of growth in electricity demand than data centers in the European Union, for example. 

Still, some big tech companies are suggesting that AI could get in the way of their climate goals. Microsoft pledged four years ago to bring its greenhouse-gas emissions to zero (or even lower) by the end of the decade. But the company’s recent sustainability report shows that instead, emissions are still ticking up, and some executives point to AI as a reason. “In 2020, we unveiled what we called our carbon moonshot. That was before the explosion in artificial intelligence,” Brad Smith, Microsoft’s president, told Bloomberg Green.

What I found interesting, though, is that it’s not AI’s electricity demand that’s contributing to Microsoft’s rising emissions, at least on paper. The company has agreements in place and buys renewable-energy credits so that electricity needs for all its functions (including AI) are met with renewables. (How much these credits actually help is questionable, but that’s a story for another day.) 

Instead, infrastructure growth could be adding to the uptick in emissions. Microsoft plans to spend $50 billion between July 2023 and June 2024 on expanding data centers to meet demand for AI products, according to the Bloomberg story. Building those data centers requires materials that can be carbon intensive, like steel, cement, and of course chips. 

Some important context to consider in the panic over AI’s energy demand is that while the technology is new, this sort of concern isn’t, as Robinson Meyer laid out in an April story in Heatmap.

Meyer points to estimates from 1999 that information technologies were already accounting for up to 13% of US power demand, and that personal computers and the internet could eat up half the grid’s capacity within the decade. That didn’t end up happening, and even at the time, computing was actually accounting for something like 3% of electricity demand. 

We’ll have to wait and see if doomsday predictions about AI’s energy demand play out. The way I see it, though, AI is probably going to be a small piece of a much bigger story. Ultimately, rising electricity demand from AI is in some ways no different from rising demand from EVs, heat pumps, or factory growth. It’s really how we meet that demand that matters. 

If we build more fossil-fuel plants to meet our growing electricity demand, it’ll come with negative consequences for the climate. But if we use rising electricity demand as a catalyst to lean harder into renewable energy and other low-carbon power sources, and push AI to get more efficient, doing more with less energy, then we can continue to slowly clean up the grid, even as AI continues to expand its reach in our lives. 


Now read the rest of The Spark

Related reading

Check out my colleague Melissa’s story on the carbon footprint of AI from December here

For a closer look at Microsoft’s new sustainability report and the effects of AI, give this Bloomberg Green story from reporters Akshat Rathi and Dina Bass a read. 

Robinson Meyer at Heatmap dug into the context around the AI energy demand in this April piece

Another thing

Missed our event last week on thermal batteries? Good news—the recording is now available for subscribers!

For the latest in our Roundtables series, I spoke with Amy Nordrum, MIT Technology Review executive editor, about how the technology works, who the crucial players are, and what I’m watching for next. Check it out here

Keeping up with climate  

Changing how we generate heat in industry will be crucial to cleaning up that sector in China, according to a new report. Thermal batteries and heat pumps could meet most of the demand. (Axios)

Form Energy is known for its iron-air batteries, which could help unlock cheap energy storage on the grid. Now, the company is working on research to produce green iron. (Canary Media)

The NET Power pilot in Texas is working to generate electricity with natural gas while capturing the vast majority of emissions. But carbon capture technology in power plants is far from proven. (Cipher News)

MIT spinoff Electrified Thermal Solutions is working to bring its thermal battery technology to commercial use. The company’s product is roughly the size of an elevator and can reach temperatures up to 1,800 °C. (Inside Climate News)

Mexico City has seen constant struggles over water. Now groundwater is drying up, and a system of dams and canals may soon be unable to provide water to the city. (New York Times)

Sodium-ion batteries could offer cheap energy storage while avoiding material crunches for metals like lithium, nickel, and cobalt. China has a massive head start, leaving other countries scrambling to catch up. (Latitude Media)

→ Here’s how this abundant material could unlock cheaper energy storage. (MIT Technology Review)

Biochar is made by heating up biomass like wood and plants in low-oxygen environments. It’s a simple approach to carbon removal, but it doesn’t always get as much attention as other carbon removal technologies. (Heatmap)

This startup wants ships to capture their own emissions by bubbling exhaust through seawater and limestone and dumping it into the ocean. Experts caution that some components of the exhaust could harm sea life if they’re not handled properly. (New Scientist)

Some Wind Turbines in Iowa Crumpled by Tornadoes

22 May 2024 at 14:55
The damage was unusual, experts say, because turbines are built to withstand extreme weather. Iowa is a wind powerhouse, with thousands of turbines.

© Charlie Neibergall/Associated Press

The remains of a tornado-damaged wind turbine in a field near Prescott, Iowa, on Tuesday.

Last summer was the hottest in 2,000 years. Here’s how we know.

16 May 2024 at 04:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

I’m ready for summer, but if this year is anything like last year, it’s going to be a doozy. In fact, the summer of 2023 in the Northern Hemisphere was the hottest in over 2,000 years, according to a new study released this week. 

If you’ve been following the headlines, you probably already know that last year was a hot one. But I was gobsmacked by this paper’s title when it came across my desk. The warmest in 2,000 years—how do we even know that?

There weren’t exactly thermometers around in the year 1, so scientists have to get creative when it comes to comparing our climate today with that of centuries, or even millennia, ago. Here’s how our world stacks up against the climate of the past, how we know, and why it matters for our future. 

Today, there are thousands and thousands of weather stations around the globe, tracking the temperature from Death Valley to Mount Everest. So there’s plenty of data to show that 2023 was, in a word, a scorcher. 

Daily global ocean temperatures were the warmest ever recorded for over a year straight. Levels of sea ice hit new lows. And of course, the year saw the highest global average temperatures since record-keeping began in 1850.  

But scientists decided to look even further back into the past for a year that could compare to our current temperatures. To do so, they turned to trees, which can act as low-tech weather stations.

The concentric rings inside a tree are evidence of the plant’s yearly growth cycles. Lighter colors correspond to quick growth over the spring and summer, while the darker rings correspond to the fall and winter. Count the pairs of light and dark rings, and you can tell how many years a tree has lived. 

Trees tend to grow faster during warm, wet years and slower during colder ones. So scientists can not only count the rings but measure their thickness, and use that as a gauge for how warm any particular year was. They also look at factors like density and track different chemical signatures found inside the wood. You don’t even need to cut down a tree to get its help with climatic studies—you can just drill out a small cylinder from the tree’s center, called a core, and study the patterns.

The oldest living trees allow us to peek a few centuries into the past. Beyond that, it’s a matter of cross-referencing the patterns on dead trees with living ones, extending the record back in time like putting a puzzle together. 

It’s taken several decades of work and hundreds of scientists to develop the records that researchers used for this new paper, said Max Torbenson, one of the authors of the study, on a press call. There are over 10,000 trees from nine regions across the Northern Hemisphere represented, allowing the researchers to draw conclusions about individual years over the past two millennia. The year 246 CE once held the crown for the warmest summer in the Northern Hemisphere in the last 2,000 years. But 25 of the last 28 years have beat that record, Torbenson says, and 2023’s summer tops them all. 

These conclusions are limited to the Northern Hemisphere, since there are only a few tree ring records from the Southern Hemisphere, says Jan Esper, lead author of the new study. And using tree rings doesn’t work very well for the tropics because seasons look different there, he adds. Since there’s no winter, there’s usually not as reliable an alternating pattern in tropical tree rings, though some trees do have annual rings that track the wet and dry periods of the year. 

Paleoclimatologists, who study ancient climates, can use other methods to get a general idea of what the climate looked like even earlier—tens of thousands to millions of years ago. 

The biggest difference between the new study using tree rings and methods of looking back further into the past is the precision. Scientists can, with reasonable certainty, use tree rings to draw conclusions about individual years in the Northern Hemisphere (536 CE was the coldest, for instance, likely because of volcanic activity). Any information from further back than the past couple of thousand years will be more of a general trend than a specific data point representing a single year. But those records can still be very useful. 

The oldest glaciers on the planet are at least a million years old, and scientists can drill down into the ice for samples. By examining the ratio of gases like oxygen, carbon dioxide, and nitrogen inside these ice cores, researchers can figure out the temperature of the time corresponding to the layers in the glacier. The oldest continuous ice-core record, which was collected in Antarctica, goes back about 800,000 years. 

Researchers can use fossils to look even further back into Earth’s temperature record. For one 2020 study, researchers drilled into the seabed and looked at the sediment and tiny preserved shells of ancient organisms. From the chemical signatures in those samples, they found that the temperatures we might be on track to record may be hotter than anything the planet has experienced on a global scale in tens of millions of years. 

It’s a bit sobering to know that we’re changing the planet in such a dramatic way. 

The good news is, we know what we need to do to turn things around: cut emissions of planet-warming gases like carbon dioxide and methane. The longer we wait, the more expensive and difficult it will be to stop warming and reverse it, as Esper said on the press call: “We should do as much as possible, as soon as possible.” 


Now read the rest of The Spark

Related reading

Last year broke all sorts of climate records, from emissions to ocean temperatures. For more on the data, check out this story from December.

How hot is too hot for the human body? I tackled that very question in a 2021 story.  

Two engineers in lab coats monitor the thermal battery powering a conveyor belt of bottles
SIMON LANDREIN

Another thing

Readers chose thermal batteries as the 11th Breakthrough Technology of 2024. If you want to hear more about what thermal batteries are, how they work, and why this all matters, join us for the latest in our Roundtables series of online events, where I’ll be getting into the nitty-gritty details and answering some audience questions.

This event is exclusively for subscribers, so subscribe if you haven’t already, and then register here to join us tomorrow, May 16, at noon Eastern time. Hope to see you there! 

Keeping up with climate  

Scientists just recorded the largest ever annual leap in the amount of carbon dioxide in the atmosphere. The concentration of the planet-warming gas in March 2024 was 4.7 parts per million higher than it was a year before. (The Guardian)

Tesla has reportedly begun rehiring some of the workers who were laid off from its charging team in recent weeks. (Bloomberg)

→ To catch up on what’s going on at Tesla, and what it means for the future of EV charging and climate tech more broadly, check out the newsletter from last week if you missed it. (MIT Technology Review)

A new rule could spur thousands of miles of new power lines, making it easier to add renewables to the grid in the US. The Federal Energy Regulatory Commission will require grid operators to plan 20 years ahead, considering things like the speed of wind and solar installations. (New York Times)

Where does carbon dioxide go after it’s been vacuumed out of the atmosphere? Here are 10 options. (Latitude Media)

Ocean temperatures have been extremely high, shattering records over the past year. All that heat could help fuel a particularly busy upcoming hurricane season. (E&E News)

New tariffs in the US will tack on additional costs to a wide range of Chinese imports, including batteries and solar cells. The tariff on EVs will take a particularly drastic jump, going from 27.5% to 102.5%. (Associated Press)

A reporter took a trip to the Beijing Auto Show and drove dozens of EVs. His conclusion? Chinese EVs are advancing much faster than Western automakers can keep up with. (InsideEVs)

Harnessing solar power via satellites in space and beaming it down to Earth is a tempting dream. But the reality, as you might expect, is probably not so rosy. (IEEE Spectrum)

New Rules to Overhaul Electric Grids Could Boost Wind and Solar Power

13 May 2024 at 18:22
The Federal Energy Regulatory Commission approved the biggest changes in more than a decade to the way U.S. power lines are planned and funded.

© Renaud Philippe for The New York Times

A transmission line construction project near Bingham, Maine, in 2022.

California Will Add a Fixed Charge to Electric Bills and Reduce Rates

By: Ivan Penn
10 May 2024 at 11:06
Officials said the decision would lower bills and encourage people to use cars and appliances that did not use fossil fuels, but some experts said it would discourage energy efficiency.

© Jim Wilson/The New York Times

Utility companies across the country have long pushed for fixed charges to help cover the cost of maintaining and improving grid equipment like power lines and substations

Why EV charging needs more than Tesla

9 May 2024 at 05:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Tesla, the world’s largest EV maker, laid off its entire charging team last week. 

The timing of this move is absolutely baffling. We desperately need many more EV chargers to come online as quickly as possible, and Tesla has been a charging powerhouse. It’s in the midst of opening its charging network to other automakers and establishing its technology as the de facto standard in the US. Now, we’re already seeing new Supercharger sites canceled because of this move. 

The charging meltdown at Tesla could slow progress on EVs overall, and ultimately, the whole situation shows why climate technology needs a whole lot more than Tesla. 

Tesla first unveiled the Supercharger network in 2012 with six locations in the western US. As of 2024, the company operates over 50,000 Superchargers worldwide. (By the way, I want to note that I briefly interned at Tesla in 2016. I don’t have any ties to or financial interest in the company today.) 

The Supercharger network helped make Tesla an EV juggernaut. Fast charging speeds and a navigation system that took the guesswork out of finding charging stations helped ease the transition for people buying their first EVs. Tesla operates more fast chargers than anyone else in the US, and the reliability of those chargers is leagues better than that of competitors. For a long time, this was all exclusive to Tesla drivers. 

Over the past year, Tesla has begun cracking open the doors to its charging network. The company made some of its stations available to all EVs, in part to go after incentives designated for private companies building public chargers. 

In the US, Tesla has also persuaded other automakers to adopt its charging connector, which it standardized and named the North American Charging Standard. In May 2023, Ford announced a move to adopt the NACS, and nearly every other automaker selling EVs in the US has followed suit.

Then, last week, Tesla laid off its 500-person charging team. The move came as part of wider layoffs that are expected to affect 10% of Tesla’s global workforce. Even interns weren’t immune.

Tesla “still plans to grow the Supercharger network,” though the focus will shift to maintaining and expanding existing locations rather than adding new ones, according to a post from CEO Elon Musk on the site formerly known as Twitter. (How does the company plan to expand or even maintain existing locations with apparently no dedicated charging team? Your guess is as good as mine. Tesla didn’t respond to a request for comment.)

But the effects from losing the charging team were immediate. Tesla backed out of a handful of leases for upcoming Supercharger locations in New York. In an email, the company told suppliers to hold off on breaking ground on new construction projects. 

The move is a concerning one at a crucial time for EV charging infrastructure. Right now, there are nowhere near enough chargers installed in the US to support a shift to electric vehicles. If EVs make up half of new-car sales by the end of the decade, we’ll need roughly 1.2 million public chargers installed by then, according to a 2023 study from the National Renewable Energy Laboratory. Today, the country has 170,000 charging ports available. 

In a recent poll, nearly 80% of US adults said that a lack of charging infrastructure is a primary reason for not buying an EV. That was true whether they lived in a city, in the suburbs, or in more rural areas.

In a way, it does make sense that Tesla appears to be uninterested in being the one to build out a public charging network. Chargers are costly to build and maintain, and they might not be all that profitable in the near term

According to analysis by BNEF, Tesla pulled in about $1.7 billion from charging last year, only about 1.5% of the company’s total revenue. Opening up chargers to vehicles from other automakers could help push revenue from this source up to $7.4 billion annually by the end of the decade. But that’s still a relatively small piece of Tesla’s total potential pie. 

Musk seems more interested in pursuing buzzy ideas like robotaxis than doing the difficult and expensive work of providing EV charging as a public service. 

Honestly, I think this move is a wake-up call for the EV industry. Tesla has played an undeniable role in bringing EVs to the mainstream. But we’re in a new stage of the game now, one that’s less about sleek sports cars and more about deploying known technologies and keeping them working. 

Other companies may step in to help fill the charging gap Tesla is opening. Revel expressed interest in taking over those canceled leases in New York City, for instance. But I wouldn’t hold my breath for a shiny new company to be our charging hero. 

Cutting emissions and remaking our economy will require buckling down to deploy and maintain solutions that we already know work, whether that’s in transportation or any other sector. For EV charging, and for climate technology as a whole, we need more than Tesla. Here’s hoping we can get it. 


Now read the rest of The Spark

Related reading

Perhaps the single biggest remaining barrier to EV adoption is a lack of charging infrastructure, as I wrote in a newsletter last year.

We need way more chargers to support the number of new EVs that are expected to hit the roads this decade. I dug into how many for a news story last year.

New battery technology could help EV batteries charge even faster. Learn what could be coming next in this story from August.

Another thing

Meat is a major climate problem. Whether solutions come in the form of plant-based alternatives or products grown in the lab, we shouldn’t expect them to solve every problem under the sun, argues my colleague James Temple, in a new essay published this week. Give it a read! 

Keeping up with climate  

Alternative jet fuels have a corn problem. The crop can be used to make fuels that qualify for tax credits in the US, but critics are skeptical about just how helpful they’ll be in efforts to cut emissions. (MIT Technology Review)

This startup is making fuel from carbon dioxide. Infinium’s Texas facility came online in late 2023, and its synthetic fuels could help clean up aviation and trucking—but only if the price is right. (Bloomberg)

New York City pizza shops are going electric. A citywide ordinance just went into effect that requires wood- and coal-burning ovens to cut their pollution, and many are turning to electric ovens instead of undertaking the costly upgrade. (New York Times)

Building a new energy system happens one project at a time. I loved this list of 10 potentially make-or-break projects that represent the potential future of our grid. (Heatmap)

→ The list includes a new site from Fervo in Utah, expected in 2026. Get the inside look at the company’s technology in this feature story from last year. (MIT Technology Review)

Funding for climate-tech startups in Africa is growing, with businesses raising more than $3.4 billion since 2019. But there’s still a long way to go to help the continent meet its climate goals. (Associated Press)

One very big, and very simple, thing is holding back heat pumps: a lack of workers. We need more people to make and install the appliances, which help cut emissions by using electricity to efficiently heat and cool spaces. (Wired)

→ Heat pumps are booming, and they’re on our list of 2024 Breakthrough Technologies. (MIT Technology Review)

Compressing air and storing it underground could help clean up the grid. Yes, really. Canadian company Hydrostor is close to breaking ground on its first large long-duration energy storage project later this year in Australia. (Inside Climate News)

How I learned to stop worrying and love fake meat

7 May 2024 at 09:25

Fixing our collective meat problem is one of the trickiest challenges in addressing climate change—and for some baffling reason, the world seems intent on making the task even harder.

The latest example occurred last week, when Florida governor Ron DeSantis signed a law banning the production, sale, and transportation of cultured meat across the Sunshine State. 

“Florida is fighting back against the global elite’s plan to force the world to eat meat grown in a petri dish or bugs to achieve their authoritarian goals,” DeSantis seethed in a statement.

Alternative meat and animal products—be they lab-grown or plant-based—offer a far more sustainable path to mass-producing protein than raising animals for milk or slaughter. Yet again and again, politicians, dietitians, and even the press continue to devise ways to portray these products as controversial, suspect, or substandard. No matter how good they taste or how much they might reduce greenhouse-gas emissions, there’s always some new obstacle standing in the way—in this case, Governor DeSantis, wearing a not-at-all-uncomfortable smile.  

The new law clearly has nothing to do with the creeping threat of authoritarianism (though for more on that, do check out his administration’s crusade to ban books about gay penguins). First and foremost it is an act of political pandering, a way to coddle Florida’s sizable cattle industry, which he goes on to mention in the statement.

Cultured meat is seen as a threat to the livestock industry because animals are only minimally involved in its production. Companies grow cells originally extracted from animals in a nutrient broth and then form them into nuggets, patties or fillets. The US Department of Agriculture has already given its blessing to two companies, Upside Foods and Good Meat, to begin selling cultured chicken products to consumers. Israel recently became the first nation to sign off on a beef version.

It’s still hard to say if cultured meat will get good enough and cheap enough anytime soon to meaningfully reduce our dependence on cattle, chicken, pigs, sheep, goats, and other animals for our protein and our dining pleasure. And it’s sure to take years before we can produce it in ways that generate significantly lower emissions than standard livestock practices today.

But there are high hopes it could become a cleaner and less cruel way of producing meat, since it wouldn’t require all the land, food, and energy needed to raise, feed, slaughter, and process animals today. One study found that cultured meat could reduce emissions per kilogram of meat 92% by 2030, even if cattle farming also achieves substantial improvements.

Those sorts of gains are essential if we hope to ease the rising dangers of climate change, because meat, dairy, and cheese production are huge contributors to greenhouse-gas emissions.

DeSantis and politicians in other states that may follow suit, including Alabama and Tennessee, are raising the specter of mandated bug-eating and global-elite string-pulling to turn cultured meat into a cultural issue, and kill the industry in its infancy. 

But, again, it’s always something. I’ve heard a host of other arguments across the political spectrum directed against various alternative protein products, which also include plant-based burgers, cheeses, and milks, or even cricket-derived powders and meal bars. Apparently these meat and dairy alternatives shouldn’t be highly processed, mass-produced, or genetically engineered, nor should they ever be as unhealthy as their animal-based counterparts. 

In effect, we are setting up tests that almost no products can pass, when really all we should ask of alternative proteins is that they be safe, taste good, and cut climate pollution.

The meat of the matter

Here’s the problem. 

Livestock production generates more than 7 billion tons of carbon dioxide, making up 14.5% of the world’s overall climate emissions, according to the United Nations Food and Agriculture Organization.

Beef, milk, and cheese production are, by far, the biggest problems, representing some 65% of the sector’s emissions. We burn down carbon-dense forests to provide cows with lots of grazing land; then they return the favor by burping up staggering amounts of methane, one of the most powerful greenhouse gases. Florida’s cattle population alone, for example, could generate about 180 million pounds of methane every year, as calculated from standard per-animal emissions

In an earlier paper, the World Resources Institute noted that in the average US diet, beef contributed 3% of the calories but almost half the climate pollution from food production. (If you want to take a single action that could meaningfully ease your climate footprint, read that sentence again.)

The added challenge is that the world’s population is both growing and becoming richer, which means more people can afford more meat. 

There are ways to address some of the emissions from livestock production without cultured meat or plant-based burgers, including developing supplements that reduce methane burps and encouraging consumers to simply reduce meat consumption. Even just switching from beef to chicken can make a huge difference.

Let’s clear up one matter, though. I can’t imagine a politician in my lifetime, in the US or most of the world, proposing a ban on meat and expecting to survive the next election. So no, dear reader. No one’s coming for your rib eye. If there’s any attack on personal freedoms and economic liberty here, DeSantis is the one waging it by not allowing Floridians to choose for themselves what they want to eat.

But there is a real problem in need of solving. And the grand hope of companies like Beyond Meat, Upside Foods, Miyoko’s Creamery, and dozens of others is that we can develop meat, milk, and cheese alternatives that are akin to EVs: that is to say, products that are good enough to solve the problem without demanding any sacrifice from consumers or requiring government mandates. (Though subsidies always help.)

The good news is the world is making some real progress in developing substitutes that increasingly taste like, look like, and have (with apologies for the snooty term) the “mouthfeel” of the traditional versions, whether they’ve been developed from animal cells or plants. If they catch on and scale up, it could make a real dent in emissions—with the bonus of reducing animal suffering, environmental damage, and the spillover of animal disease into the human population.

The bad news is we can’t seem to take the wins when we get them. 

The blue cheese blues

For lunch last Friday, I swung by the Butcher’s Son Vegan Delicatessen & Bakery in Berkeley, California, and ordered a vegan Buffalo chicken sandwich with a blue cheese on the side that was developed by Climax Foods, also based in Berkeley.

Late last month, it emerged that the product had, improbably, clinched the cheese category in the blind taste tests of the prestigious Good Food awards, as the Washington Post revealed.

Let’s pause here to note that this is a stunning victory for vegan cheeses, a clear sign that we can use plants to produce top-notch artisanal products, indistinguishable even to the refined palates of expert gourmands. If a product is every bit as tasty and satisfying as the original but can be produced without milking methane-burping animals, that’s a big climate win.

But sadly, that’s not where the story ended.

JAMES TEMPLE

After word leaked out that the blue cheese was a finalist, if not the winner, the Good Food Foundation seems to have added a rule that didn’t exist when the competition began but which disqualified Climax Blue, the Post reported.

I have no special insights into what unfolded behind the scenes. But it reads at least a little as if the competition concocted an excuse to dethrone a vegan cheese that had bested its animal counterparts and left traditionalists aghast. 

That victory might have done wonders to help promote acceptance of the Climax product, if not the wider category. But now the story is the controversy. And that’s a shame. Because the cheese is actually pretty good. 

I’m no professional foodie, but I do have a lifetime of expertise born of stubbornly refusing to eat any salad dressing other than blue cheese. In my own taste test, I can report it looked and tasted like mild blue cheese, which is all it needs to do.

A beef about burgers

Banning a product or changing a cheese contest’s rules after determining the winner are both bad enough. But the reaction to alternative proteins that has left me most befuddled is the media narrative that formed around the latest generation of plant-based burgers soon after they started getting popular a few years ago. Story after story would note, in the tone of a bold truth-teller revealing something new each time: Did you know these newfangled plant-based burgers aren’t actually all that much healthier than the meat variety? 

To which I would scream at my monitor: THAT WAS NEVER THE POINT!

The world has long been perfectly capable of producing plant-based burgers that are better for you, but the problem is that they tend to taste like plants. The actual innovation with the more recent options like Beyond Burger or Impossible Burger is that they look and taste like the real thing but can be produced with a dramatically smaller climate footprint.

That’s a big enough win in itself. 

If I were a health reporter, maybe I’d focus on these issues too. And if health is your personal priority, you should shop for a different plant-based patty (or I might recommend a nice salad, preferably with blue cheese dressing).

But speaking as a climate reporter, expecting a product to ease global warming, taste like a juicy burger, and also be low in salt, fat, and calories is absurd. You may as well ask a startup to conduct sorcery.

More important, making a plant-based burger healthier for us may also come at the cost of having it taste like a burger. Which would make it that much harder to win over consumers beyond the niche of vegetarians and thus have any meaningful impact on emissions. WHICH IS THE POINT!

It’s incredibly difficult to convince consumers to switch brands and change behaviors, even for a product as basic as toothpaste or toilet paper. Food is trickier still, because it’s deeply entwined with local culture, family traditions, festivals and celebrations. Whether we find a novel food product to be yummy or yucky is subjective and highly subject to suggestion. 

And so I’m ending with a plea. Let’s grant ourselves the best shot possible at solving one of the hardest, most urgent problems before us. Treat bans and political posturing with the ridicule they deserve. Reject the argument that any single product must, or can, solve all the problems related to food, health, and the environment.

Give these alternative foods a shot, afford them room to improve, and keep an open mind. 

Though it’s cool if you don’t want to try the crickets.

Three takeaways about the current state of batteries

2 May 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Batteries are on my mind this week. (Aren’t they always?) But I’ve got two extra reasons to be thinking about them today. 

First, there’s a new special report from the International Energy Agency all about how crucial batteries are for our future energy systems. The report calls batteries a “master key,” meaning they can unlock the potential of other technologies that will help cut emissions. Second, we’re seeing early signs in California of how the technology might be earning that “master key” status already by helping renewables play an even bigger role on the grid. So let’s dig into some battery data together. 

1) Battery storage in the power sector was the fastest-growing commercial energy technology on the planet in 2023

Deployment doubled over the previous year’s figures, hitting nearly 42 gigawatts. That includes utility-scale projects as well as projects installed “behind the meter,” meaning they’re somewhere like a home or business and don’t interact with the grid. 

Over half the additions in 2023 were in China, which has been the leading market in batteries for energy storage for the past two years. Growth is faster there than the global average, and installations tripled from 2022 to last year. 

One driving force of this quick growth in China is that some provincial policies require developers of new solar and wind power projects to pair them with a certain level of energy storage, according to the IEA report.

Intermittent renewables like wind and solar have grown rapidly in China and around the world, and the technologies are beginning to help clean up the grid. But these storage requirement policies reveal the next step: installing batteries to help unlock the potential of renewables even during times when the sun isn’t shining and the wind isn’t blowing. 

2) Batteries are starting to show exactly how they’ll play a crucial role on the grid.

When there are small amounts of renewables, it’s not all that important to have storage available, since the sun’s rising and setting will cause little more than blips in the overall energy mix. But as the share increases, some of the challenges with intermittent renewables become very clear. 

We’ve started to see this play out in California. Renewables are able to supply nearly all the grid’s energy demand during the day on sunny days. The problem is just how different the picture is at noon and just eight hours later, once the sun has gone down. 

In the middle of the day, there’s so much solar power available that gigawatts are basically getting thrown away. Electricity prices can actually go negative. Then, later on, renewables quickly fall off, and other sources like natural gas need to ramp up to meet demand. 

But energy storage is starting to catch up and make a dent in smoothing out that daily variation. On April 16, for the first time, batteries were the single greatest power source on the grid in California during part of the early evening, just as solar fell off for the day. (Look for the bump in the darkest line on the graph above—it happens right after 6 p.m.)

Batteries have reached this number-one status several more times over the past few weeks, a sign that the energy storage now installed—10 gigawatts’ worth—is beginning to play a part in a balanced grid. 

3) We need to build a lot more energy storage. Good news: batteries are getting cheaper.

While early signs show just how important batteries can be in our energy system, we still need gobs more to actually clean up the grid. If we’re going to be on track to cut greenhouse-gas emissions to zero by midcentury, we’ll need to increase battery deployment sevenfold. 

The good news is the technology is becoming increasingly economical. Battery costs have fallen drastically, dropping 90% since 2010, and they’re not done yet. According to the IEA report, battery costs could fall an additional 40% by the end of this decade. Those further cost declines would make solar projects with battery storage cheaper to build than new coal power plants in India and China, and cheaper than new gas plants in the US. 

Batteries won’t be the magic miracle technology that cleans up the entire grid. Other sources of low-carbon energy that are more consistently available, like geothermal, or able to ramp up and down to meet demand, like hydropower, will be crucial parts of the energy system. But I’m interested to keep watching just how batteries contribute to the mix. 


Now read the rest of The Spark

Related reading

Some companies are looking beyond lithium for stationary energy storage. Dig into the prospects for sodium-based batteries in this story from last year.

Lithium-sulfur technology could unlock cheaper, better batteries for electric vehicles that can go farther on a single charge. I covered one company trying to make them a reality earlier this year.

Two engineers in lab coats monitor the thermal battery powering a conveyor belt of bottles
SIMON LANDREIN

Another thing

Thermal batteries are so hot right now. In fact, readers chose the technology as our 11th Breakthrough Technology of 2024.

To celebrate, we’re hosting an online event in a couple of weeks for subscribers. We’ll dig into why thermal batteries are so interesting and why this is a breakthrough moment for the technology. It’s going to be a lot of fun, so subscribe if you haven’t already and then register here to join us on May 16 at noon Eastern time.

You’ll be able to submit a question when you register—please do that so I know what you want to hear about! See you there! 

Keeping up with climate  

New rules that force US power plants to slash emissions could effectively spell the end of coal power in the country. Here are five things to know about the regulations. (New York Times)

Wind farms use less land than you might expect. Turbines really take up only a small fraction of the land where they’re sited, and co-locating projects with farms or other developments can help reduce environmental impact. (Washington Post)

The fourth reactor at Plant Vogtle in Georgia officially entered commercial operation this week. The new reactor will provide electricity for up to 500,000 homes and businesses. (Axios

A new factory will be the first full-scale plant to produce sodium-ion batteries in the US. The chemistry could provide a cheaper alternative to the standard lithium-ion chemistry and avoid material constraints. (Bloomberg)

→ I wrote about the potential for sodium-based batteries last year. (MIT Technology Review)

Tesla has apparently laid off a huge portion of its charging team. The move comes as the company’s charging port has been adopted by most major automakers. (The Verge)

A vegan cheese was up for a major food award. Then, things got messy. (Washington Post)

→ For a look at how Climax Foods makes its plant-based cheese with AI, check out this story from our latest magazine issue. (MIT Technology Review)

Someday mining might be done with … seaweed? Early research is looking into using seaweed to capture and concentrate high-value metals. (Hakai)

The planet’s oceans contain enormous amounts of energy. Harnessing it is an early-stage industry, but some proponents argue there’s a role for wave and tidal power technologies. (Undark)

Why new ethanol aviation fuel tax subsidies aren’t a clear climate win

1 May 2024 at 17:27

Eliminating carbon pollution from aviation is one of the most challenging parts of the climate puzzle, simply because large commercial airlines are too heavy and need too much power during takeoff for today’s batteries to do the job. 

But one way that companies and governments are striving to make some progress is through the use of various types of sustainable aviation fuels (SAFs), which are derived from non-petroleum sources and promise to be less polluting than standard jet fuel.

This week, the US announced a push to help its biggest commercial crop, corn, become a major feedstock for SAFs. 

Federal guidelines announced on April 30 provide a pathway for ethanol producers to earn SAF tax credits within the Inflation Reduction Act, President Biden’s signature climate law, when the fuel is produced from corn or soy grown on farms that adopt certain sustainable agricultural practices.

It’s a limited pilot program, since the subsidy itself expires at the end of this year. But it could set the template for programs in the future that may help ethanol producers generate more and more SAFs, as the nation strives to produce billions of gallons of those fuels per year by 2030. 

Consequently, the so-called Climate Smart Agricultural program has already sounded alarm bells among some observers, who fear that the federal government is both overestimating the emissions benefits of ethanol and assigning too much credit to the agricultural practices in question. Those include cover crops, no-till techniques that minimize soil disturbances, and use of “enhanced-efficiency fertilizers,” which are designed to increase uptake by plants and thus reduce runoff into the environment.

The IRA offers a tax credit of $1.25 per gallon for SAFs that are 50% lower in emissions than standard jet fuel, and as much as 50 cents per gallon more for sustainable fuels that are cleaner still. The new program can help corn- or soy-based ethanol meet that threshold when the source crops are produced using some or all of those agricultural practices.

Since the vast majority of US ethanol is produced from corn, let’s focus on the issues around that crop. To get technical, the program allows ethanol producers to subtract 10 grams of carbon dioxide per megajoule of energy, a measure of carbon intensity, from the life-cycle emissions of the fuel when it’s generated from corn produced with all three of the practices mentioned. That’s about an eighth to a tenth of the carbon intensity of gasoline.

Ethanol’s questionable climate footprint

Today, US-generated ethanol is mainly mixed with gasoline. But ethanol producers are eager to develop new markets for the product as electric vehicles make up a larger share of the cars and trucks on the road. Not surprisingly, then, industry trade groups applauded the announcement this week.

The first concern with the new program, however, is that the emissions benefits of corn-based ethanol have been hotly debated for decades.

Corn, like any plant that uses photosynthesis to produce food, sucks up carbon dioxide from the air. But using corn for fuel rather than food also creates pressure to clear more land for farming, a process that releases carbon dioxide from plants and soil. In addition, planting, fertilizing, and harvesting corn produce climate pollution as well, and the same is true of refining, distributing, and burning ethanol. 

For its analyses under the new program, the Treasury Department intends to use an updated version of the so-called GREET model to evaluate the life-cycle emissions of SAFs, which was developed by the Department of Energy’s Argonne National Lab. A 2021 study from the lab, relying on that model, concluded that US corn ethanol produced as much as 52% less greenhouse gas than gasoline. 

But some researchers and nonprofits have criticized the tool for accepting low estimates of the emissions impacts of land-use changes, among other issues. Other assessments of ethanol emissions have been far more damning.

A 2022 EPA analysis surveyed the findings from a variety of models that estimate the life-cycle emissions of corn-based ethanol and found that in seven out of 20 cases, they exceeded 80% of the climate pollution from gasoline and diesel.

Moreover, the three most recent estimates from those models found ethanol emissions surpassed even the higher-end estimates for gasoline or diesel, Alison Cullen, chair of the EPA’s science advisory board, noted in a 2023 letter to the administrator of the agency.

“Thus, corn starch ethanol may not meet the definition of a renewable fuel” under the federal law that mandates the use of biofuels in the market, she wrote. If so, it’s then well short of the 50% threshold required by the IRA, and some say it’s not clear that the farming practices laid out this week could close the gap.

Agricultural practices

Nikita Pavlenko, who leads the fuels team at the International Council on Clean Transportation, a nonprofit research group, asserted in an email that the climate-smart agricultural provisions “are extremely sloppy” and “are not substantiated.” 

He said the Department of Energy and Department of Agriculture especially “put their thumbs on the scale” on the question of land-use changes, using estimates of soy and corn emissions that were 33% to 55% lower than those produced for a program associated with the UN’s International Civil Aviation Organization.

He finds that ethanol sourced from farms using these agriculture practices will still come up short of the IRA’s 50% threshold, and that producers may have to take additional steps to curtail emissions, potentially including adding carbon capture and storage to ethanol facilities or running operations on renewables like wind or solar.

Freya Chay, a program lead at CarbonPlan, which evaluates the scientific integrity of carbon removal methods and other climate actions, says that these sorts of agricultural practices can provide important benefits, including improving soil health, reducing erosion, and lowering the cost of farming. But she and others have stressed that confidently determining when certain practices actually and durably increase carbon in soil is “exceedingly complex” and varies widely depending on soil type, local climate conditions, past practices, and other variables.

One recent study of no-till practices found that the carbon benefits quickly fade away over time and reach nearly zero in 14 years. If so, this technique would do little to help counter carbon emissions from fuel combustion, which can persist in the atmosphere for centuries or more.

“US policy has a long history of asking how to continue justifying investment in ethanol rather than taking a clear-eyed approach to evaluating whether or not ethanol helps us reach our climate goals,” Chay wrote in an email. “In this case, I think scrutiny is warranted around the choice to lean on agricultural practices with uncertain and variable benefits in a way that could unlock the next tranche of public funding for corn ethanol.”

There are many other paths for producing SAFs that are or could be less polluting than ethanol. For example, they can be made from animal fats, agriculture waste, forest trimmings, or non-food plants that grow on land unsuitable for commercial crops. Other companies are developing various types of synthetic fuels, including electrofuels produced by capturing carbon from plants or the air and then combining it with cleanly sourced hydrogen. 

But all these methods are much more expensive than extracting and refining fossil fuels, and most of the alternative fuels will still produce more emissions when they’re used than the amount that was pulled out of the atmosphere by the plants or processes in the first place. 

The best way to think of these fuels is arguably as a stopgap, a possible way to make some climate progress while smart people strive to develop and build fully emissions-free ways of quickly, safely, and reliably moving things and people around the globe.

Key Solar Panel Ingredient Is Made in the U.S.A. Again

By: Ivan Penn
25 April 2024 at 13:57
REC Silicon says it will soon start shipping polysilicon, which has come mostly from China, reviving a Washington State factory that shut down in 2019.

© Ruth Fremson/The New York Times

REC Silicon is preparing to fulfill its first shipment of polysilicon granules, which are used in the production of solar panels, at its factory in Moses Lake, Wash.

Want less mining? Switch to clean energy.

25 April 2024 at 07:00

Political fights over mining and minerals are heating up, and there are growing environmental and sociological concerns about how to source the materials the world needs to build new energy technologies. 

But low-emissions energy sources, including wind, solar, and nuclear power, have a smaller mining footprint than coal and natural gas, according to a new report from the Breakthrough Institute released today.

The report’s findings add to a growing body of evidence that technologies used to address climate change will likely lead to a future with less mining than a world powered by fossil fuels. However, experts point out that oversight will be necessary to minimize harm from the mining needed to transition to lower-emission energy sources. 

“In many ways, we talk so much about the mining of clean energy technologies, and we forget about the dirtiness of our current system,” says Seaver Wang, an author of the report and co-director of Climate and Energy at the Breakthrough Institute, an environmental research center.  

In the new analysis, Wang and his colleagues considered the total mining footprint of different energy technologies, including the amount of material needed for these energy sources and the total amount of rock that needs to be moved to extract that material.

Many minerals appear in small concentrations in source rock, so the process of extracting them has a large footprint relative to the amount of final product. A mining operation would need to move about seven kilograms of rock to get one kilogram of aluminum, for instance. For copper, the ratio is much higher, at over 500 to one. Taking these ratios into account allows for a more direct comparison of the total mining required for different energy sources. 

With this adjustment, it becomes clear that the energy source with the highest mining burden is coal. Generating one gigawatt-hour of electricity with coal requires 20 times the mining footprint as generating the same electricity with low-carbon power sources like wind and solar. Producing the same electricity with natural gas requires moving about twice as much rock.

Tallying up the amount of rock moved is an imperfect approximation of the potential environmental and sociological impact of mining related to different technologies, Wang says, but the report’s results allow researchers to draw some broad conclusions. One is that we’re on track for less mining in the future. 

Other researchers have projected a decrease in mining accompanying a move to low-emissions energy sources. “We mine so many fossil fuels today that the sum of mining activities decreases even when we assume an incredibly rapid expansion of clean energy technologies,” Joey Nijnens, a consultant at Monitor Deloitte and author of another recent study on mining demand, said in an email.

That being said, potentially moving less rock around in the future “hardly means that society shouldn’t look for further opportunities to reduce mining impacts throughout the energy transition,” Wang says.

There’s already been progress in cutting down on the material required for technologies like wind and solar. Solar modules have gotten more efficient, so the same amount of material can yield more electricity generation. Recycling can help further cut material demand in the future, and it will be especially crucial to reduce the mining needed to build batteries.  

Resource extraction may decrease overall, but it’s also likely to increase in some places as our demands change, researchers pointed out in a 2021 study. Between 32% and 40% of the mining increase in the future could occur in countries with weak, poor, or failing resource governance, where mining is more likely to harm the environment and may fail to benefit people living near the mining projects. 

“We need to ensure that the energy transition is accompanied by responsible mining that benefits local communities,” Takuma Watari, a researcher at the National Institute for Environmental Studies and an author of the study, said via email. Otherwise, the shift to lower-emissions energy sources could lead to a reduction of carbon emissions in the Global North “at the expense of increasing socio-environmental risks in local mining areas, often in the Global South.” 

Strong oversight and accountability are crucial to make sure that we can source minerals in a responsible way, Wang says: “We want a rapid energy transition, but we also want an energy transition that’s equitable.”

Hydrogen could be used for nearly everything. It probably shouldn’t be. 

25 April 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

From toaster ovens that work as air fryers to hair dryers that can also curl your hair, single tools that do multiple jobs have an undeniable appeal. 

In the climate world, hydrogen is perhaps the ultimate multi-tool. It can be used in fuel cells or combustion engines and is sometimes called the Swiss Army knife for cleaning up emissions. I’ve written about efforts to use hydrogen in steelmaking, cars, and aviation, just to name a few. And a new story for our latest print issue explores the potential of hydrogen trains. 

Hydrogen might be a million tools in one, but some experts argue that it can’t do it all, and some uses could actually be distractions from real progress on emissions. So let’s dig into where we might see hydrogen used and where it might make the biggest emissions cuts. 

Hydrogen could play a role in cleaning up nearly every sector of the economy—in theory. The reality today is that hydrogen is much more of a climate problem than a solution.

Most hydrogen is used in oil refining, chemical production, and heavy industry, and it is almost exclusively generated using fossil fuels. In total, hydrogen production and use accounted for around 900 million metric tons of carbon dioxide emissions in 2022.

There are technologies on the table to clean up hydrogen production. But global hydrogen demand hit 95 million metric tons in 2022, and only about 0.7% of that was met with low-emissions hydrogen. (For more on various hydrogen sources and why the details matter, check out this newsletter from last year.) 

Transforming the global hydrogen economy won’t be fast or cheap, but it is happening. Annual production of low-emissions hydrogen is on track to hit 38 million metric tons by 2030, according to the International Energy Agency. The pipeline of new projects is growing quickly, but so is hydrogen demand, which could hit 150 million metric tons by the end of the decade. 

Basically every time I report on hydrogen, whether in transportation or energy or industry, experts tell me it’s crucial to be smart about where that low-emissions hydrogen is going. There are, of course, disagreements about what exactly the order of priorities should be, but I’ve seen a few patterns.

First, the focus should probably be on cleaning up production of the hydrogen we’re already using for things like fertilizer. “The main thing is replacing existing uses,” as Geert de Cock, electricity and energy manager at the European Federation for Transport and Environment, put it when I spoke with him earlier this year for a story about hydrogen cars.  

Beyond that, though, hydrogen will probably be most useful in industries where there aren’t other practical options already on the table. 

That’s a central idea behind an infographic I think about a lot: the Hydrogen Ladder, conceptualized and updated frequently by Michael Liebreich, founder of BloombergNEF. In this graphic, he basically ranks just about every use of hydrogen, from “unavoidable” uses at the top to “uncompetitive” ones at the bottom. His metrics include cost, convenience, and economics. 

At the top of this ladder are existing uses and industries where there’s no alternative to hydrogen. There, Liebrich agrees with most experts I’ve spoken with about hydrogen. 

On the next few rungs come sectors where there’s still no dominant technical solution for cleaning up emissions, like shipping, aviation, and steel production. You might recognize these as famously “hard to solve” sectors. 

Heavy industry often requires high temperatures, which have historically been expensive to achieve with electricity. Cost and technical challenges have pushed companies to explore using hydrogen in processes like steelmaking. For shipping and aviation, there are strict limitations on the mass and size of the fueling system, and batteries can’t make the cut just yet, leaving hydrogen a potential opening. 

Toward the bottom of Liebreich’s ladder are applications where we already have clear decarbonization options available today, making hydrogen a long shot. Take domestic heating, for example. Heat pumps are breaking through in a massive way (we put them on our list of 10 Breakthrough Technologies this year), so hydrogen has some stiff competition there. 

Cars also rank right at the bottom of the ladder, alongside two- and three-wheeled vehicles, since battery-powered transit is becoming increasingly popular and charging infrastructure is growing. That leaves little room for hydrogen vehicles to make a dent, at least in the near future.

I’m not counting hydrogen out as a fuel for any one use, and there’s plenty of room to disagree on particular uses and their particular rungs. But given that we have a growing number of options in our arsenal to fight climate change, I’m betting that as a general rule, hydrogen will find its niches rather than emerge as the magic multi-tool that saves us all.


Now read the rest of The Spark

Related reading

A fight over hydrogen trains reveals that cleaning up transportation is a political problem as much as it is a technical one. Read more in this story from Benjamin Schneider, featured in our latest magazine issue. 

Where hydrogen comes from matters immensely when it comes to climate impacts. Read more in this newsletter from last year.

Hydrogen is losing the race to cut emissions from cars, and I explored why for a story earlier this year. 

R. KIKUO JOHNSON

Another thing

It’s here! The Build issue of our print magazine just dropped, and it’s a good one. 

Dive into this story about how artificial snowdrifts could help protect seal pups from climate change. Volunteers in Finland brave freezing temperatures to help create an environment for endangered seals to thrive. 

Or if you’re feeling hungry, I’d recommend this look at how Climax Foods is using machine learning to create vegan cheeses that can stand up to discerning palates. (I have tasted these and can attest that some of them are truly uncanny.) 

Find the full issue here. Happy reading! 

Keeping up with climate  

A solar giant is moving manufacturing to the US. Tariffs and tax incentives are reshaping the solar market, but things could get challenging fast, as my colleague Zeyi Yang reported this week. (MIT Technology Review)

In a new op-ed, Daniele Visioni makes the case that proposals to crack down on geoengineering are misguided. He calls for more research, including outdoor experiments, to make better decisions about climate interventions. (MIT Technology Review)

Americans have some surprising feelings about EVs. And in a recent survey, fewer than half of US adults said they think EVs are better for the climate than gas-powered ones. (Sustainability by numbers)

An Australian supplier of fast charging equipment for EVs is in financial trouble. Tritium told regulators that it’s insolvent, and it’s unclear whether the company will be able to fill orders or service existing chargers. (Canary Media)

Offshore wind has faced its fair share of challenges, but the death of a mega-turbine may have played a major role. GE Vernova canceled plans for a 18-megawatt machine, causing ripples that ended in New York’s move to cancel contracts for three massive projects last week. (E&E News)

The UK’s final coal power station is set to close within the year. Here’s a look at the last site generating what used to be the country’s main source of energy. (The Guardian)

Is it time to retire the term “clean energy”? The term is a convenient way to roll up energy sources that cut emissions, like renewables and nuclear power, but some argue that it glosses over environmental harms. (Inside Climate News)

California saw batteries become the single largest source of power on the grid one evening last week—a major moment for energy storage. (Heatmap News)

How we transform to a fully decarbonized world

24 April 2024 at 05:00

In 1856, Napoleon III commissioned a baby rattle for his newborn son, to be made from one of the most precious metals known at the time: light, silvery, and corrosion-resistant aluminum. Despite its abundance—it’s the third most common element in Earth’s crust—the metal wasn’t isolated until 1824, and the complexity and cost of the process made the rattle a gift fit for a prince. It wasn’t until 1886 that two young researchers, on opposite sides of the Atlantic, developed the method that is still used for refining aluminum commercially. The Hall-Héroult process is extraordinarily energy intensive: the chemically modified ore is dissolved into a high-temperature bath of molten minerals, and an electrical current is passed through it to separate the metallic aluminum. It’s also intrinsically energy intensive: part of the reason the metal was isolated only relatively recently is because aluminum atoms bind so tightly to oxygen. No amount of clever engineering will change that physical reality. The astronomical growth in worldwide aluminum production over the last century was made possible by the build-out of the energy infrastructure necessary to power commercial refineries, and to do so in a way that was economically viable. In the US, that was facilitated by the massive hydroelectricity projects built by the federal government as part of Franklin D. Roosevelt’s New Deal, closely followed by World War II and the immense mobilization of resources it entailed: aluminum was the material of choice for the thousands and thousands of aircraft that rolled off wartime assembly lines as fast as others were shot down. Within a century, the metal went from precious and rare to ubiquitous and literally disposable.

Just as much as technological breakthroughs, it’s that availability of energy that has shaped our material world. The exponential rise in fossil-fuel usage over the past century and a half has powered novel, energy-intensive modes of extracting, processing, and consuming matter, at unprecedented scale. But now, the cumulative environmental, health, and social impacts—in economics terms, the negative externalities—of this approach have become unignorable. We can see them nearly everywhere we look, from the health effects of living near highways or oil refineries to the ever-growing issue of plastic, textile, and electronic waste. 

We’re accustomed to thinking about the energy transition as a way of solving the environmental problem of climate change. We need energy to meet human needs—for protection from the elements (whether as warmth or cooling), fuel for cooking, artificial light, social needs like mobility and communication, and more. Decarbonizing our energy systems means meeting these needs without burning fossil fuels and releasing greenhouse gases into the atmosphere. Largely as a result of public investment in clean-energy research and development, a world powered by electricity from abundant, renewable, nonpolluting sources is now within reach.

Just as much as technological breakthroughs, it’s the availability of energy that has shaped our material world

What is much less appreciated is that this shift also has the potential to power a transformation in our relationship with matter and materials, enabling us to address the environmental problem of pollution and waste. That won’t happen by accident, any more than the growth of these industries in the 20th century was an accident. In order to reach this future, we need to understand, research, invest in, and build it. Every joule of electricity that comes from fossil fuels means paying for what’s burned to produce it. In fact, because of the inefficiency of thermal generation, it means paying for many more joules of heat. 

Energy generation from renewable sources has capital and operating costs, of course, but minimal, incremental ones. That’s because the input energy arrives as wind or sunlight, not as boxcars of coal. In the big picture, this means that in a fully decarbonized world, all energy will be closer to hydroelectricity in its economics: while it may never quite be “too cheap to meter,” it may indeed be too cheap to reliably generate a profit on an open energy market. This is a problem for investor-owned energy infrastructure, but it’s potentially transformative for community-owned systems (including public utilities, nonprofit electricity cooperatives, or local microgrids), where cheaper and more abundant energy can power a just transition and a new economy.

Twentieth-century investments in energy infrastructure, like the New Deal’s Rural Electrification Act of 1936 and its counterparts worldwide, formed the basis for the global industrial economy. If we can achieve a similar scale of commitment to renewable energy—prioritizing abundance and access over profit—it will lead to another jump in what’s possible in the material world, where what was previously unthinkably expensive becomes quotidian reality. For example, just like refining aluminum, desalinating seawater is intrinsically energy intensive. But in a world with cheap, clean electricity, residents of coastal cities could get a reliable supply of drinking water from oceanside water treatment plants instead of contested freshwater sources. 

Desalination is not the only energy-intensive process that would become viable. Aluminum, glass, and steel are among the most recycled materials in part because so much energy is needed to make them from their raw precursors that recovery is economically worthwhile. In contrast, plastics—in their near infinite variety—don’t lend themselves to mechanical recycling except in a handful of cases. Effectively recycling plastics means breaking them down into their chemical building blocks, ready to be put together into new forms. And since most plastics will burn to produce heat, going in the opposite direction—reassembling those carbon atoms into new plastics—requires a significant input of energy. It’s always been easier, cheaper, and more profitable to just dump the waste into landfills and make new plastics out of freshly extracted oil and gas. But if the energy came from inexpensive renewables, the whole economic equation of making plastics could change. Carbon dioxide could be pulled from the air and transformed into useful polymers using energy from the sun, with the waste plastic decomposed into raw materials so the process could begin again. 

If this sounds familiar, it’s because it’s how plants work. But, just like Hall and Héroult’s breakthrough for aluminum, new processes would require both energy and technological innovation. Decades of research have gone into creating new kinds of plastics from fossil fuels, and only a proportionally tiny amount into what happens to those plastics at the end of their lives. But now numerous companies, including Twelve, are building on new research to do just this kind of transformation, using renewably sourced energy to turn water and atmospheric carbon dioxide back into hydrocarbons, in the form of fuel and materials.

Prioritizing abundance and access over profit will lead to another jump in what’s possible.

Finally, it’s not just about plastic. If we succeed in building a world of even cheaper and more abundant energy but we again use it to supercharge extraction, consumption, and disposal, then we might “solve” the pressing crisis around energy while worsening the multiple environmental crises posed by pollution. Instead, we can think about community-led investments in energy infrastructure as spinning up a new industrial system in which clean, inexpensive renewable energy makes it possible to recover a broad range of materials. That would cut out the enormous costs of primary extraction and disposal, including environmental depredation and geopolitical conflict. 

Building momentum as fast as we can will limit the materials bill for the huge changes that decarbonization will entail, like replacing combustion-powered vehicles with their electric equivalents. This is already happening with companies like Ascend Elements, currently building a facility in Hopkinsville, Kentucky, to produce materials for new batteries from recycled lithium batteries. It’s financed by more than half a billion dollars of recent private investment that builds on $480 million in Department of Energy grants, and the work is based on fundamental research that was supported by the National Science Foundation. As more and more clean, renewable energy comes online, we need to continue with policies that support research and development on the new technologies required to recover all kinds of materials—together with regulations that account for the true costs of extraction and disposal. This will facilitate not just an energy transition but also a matter transition, ensuring that the industrial sector aligns with the health of our planet.

Deb Chachra is a professor of engineering at Olin College of Engineering in Needham, Massachusetts, and the author of How Infrastructure Works: Inside the Systems That Shape Our World (Riverhead, 2023).

This solar giant is moving manufacturing back to the US

By: Zeyi Yang
23 April 2024 at 10:39

Whenever you see a solar panel, most parts of it probably come from China. The US invented the technology and once dominated its production, but over the past two decades, government subsidies and low costs in China have led most of the solar manufacturing supply chain to be concentrated there. The country will soon be responsible for over 80% of solar manufacturing capacity around the world.

But the US government is trying to change that. Through high tariffs on imports and hefty domestic tax credits, it is trying to make the cost of manufacturing solar panels in the US competitive enough for companies to want to come back and set up factories. The International Energy Agency has forecast that by 2027, solar-generated energy will be the largest source of power capacity in the world, exceeding both natural gas and coal—making it a market that already attracts over $300 billion in investment every year.

To understand the chances that the US will succeed, MIT Technology Review spoke to Shawn Qu. As the founder and chairman of Canadian Solar, one of the largest and longest-standing solar manufacturing companies in the world, Qu has observed cycle after cycle of changing demand for solar panels over the last 28 years. 

CANADIAN SOLAR

After decades of mostly manufacturing in Asia, Canadian Solar is pivoting back to the US because it sees a real chance for a solar industry revival, mostly thanks to the Inflation Reduction Act (IRA) passed in 2022. The incentives provided in the bill are just enough to offset the higher manufacturing costs in the US, Qu says. He believes that US solar manufacturing capacity could grow significantly in two to three years, if the industrial policy turns out to be stable enough to keep bringing companies in. 

How tariffs forced manufacturing capacity to move out of China

There are a few important steps to making a solar panel. First silicon is purified; then the resulting polysilicon is shaped and sliced into wafers. Wafers are treated with techniques like etching and coating to become solar cells, and eventually those cells are connected and assembled into solar modules.

For the past decade, China has dominated almost all of these steps, for a few reasons: low labor costs, ample supply of proficient workers, and easy access to the necessary raw materials. All these factors make made-in-China solar modules extremely price-competitive. By the end of 2024, a US-made solar panel will still cost almost three times as much as one produced in China, according to researchers at BloombergNEF. 

The question for the US, then, is how to compete. One tool the government has used since 2012 is tariffs. If a solar module containing cells made in China is imported to the US, it’s subject to as much as a 250% tariff. To avoid those tariffs, many companies, including Canadian Solar, have moved solar cell manufacturing and the downstream supply chain to Southeast Asia. Labor costs and the availability of labor forces are “the number one reason” for that move, Qu says.

When Canadian Solar was founded in 2001, it made all its solar products in China. By early 2023, the company had factories in four countries: China, Thailand, Vietnam, and Canada. (Qu says it used to manufacture in Brazil and Taiwan too, but later scaled back production in response to contracting local demand.)

But that equilibrium is changing again as further tariffs imposed by the US government aim to force supply chains to move out of China. Starting in June 2024, companies importing silicon wafers from China to make cells outside the country will also be subject to tariffs. The most likely solution for solar companies would be to “set up wafer capacity or set up partnerships with wafer makers in Southeast Asia,” says Jenny Chase, the lead solar analyst at BloombergNEF.

Qu says he’s confident the company will meet the new requirements for tariff exemption after June. “They gave the industry about two years to adapt, so I believe most of the companies, at least the tier-one companies, will be able to adapt,” he says.

The IRA, and moving the factories to the US

While US policies have succeeded in turning Southeast Asia into a solar manufacturing hot spot, not much of the supply chain has actually come back to the US. But that’s slowly changing thanks to the IRA, introduced in 2022. The law will hand out tax credits for companies producing solar modules in the US, as well as those installing the panels. 

The credits, Qu says, are enough to make Canadian Solar move some production from Southeast Asia to the US. “According to our modeling, the incentives provided just offset the cost differences—labor and supply chain—between Southeast Asia and the US,” he says.

Jesse Jenkins, an assistant professor in energy and engineering at Princeton University, has come to the same conclusion through his research. He says that the IRA subsidies and tax credits should offset higher costs of manufacturing in the US. “That should drive a significant increase in demand for made-In-America solar modules and subcomponents,” Jenkins says. And the early signs point that way too: since the introduction of the IRA, solar companies have announced plans to build over 40 factories in the US.

In 2023, Canadian Solar announced it would build its first solar module plant in Mesquite, Texas, and a solar cell plant in Jeffersonville, Indiana. The Texas factory started operating in late 2023, while the Indiana one is still in the works. 

The remaining challenges

While the IRA has brought new hope to American solar manufacturing, there are still a few obstacles ahead.

Qu says one big challenge to getting his Texas factory up and running is the lack of experienced workers. “Let’s face the reality: there was almost no silicon-based solar manufacturing in the US, so it takes time to train people,” he says. That’s a process that he expects to take at least six months. 

Another challenge to reshoring solar manufacturing is the uncertainty about whether the US will keep heavily subsidizing the clean energy industry, especially if the White House changes hands after the election this year. “The key is stability,” Qu says, “Sometimes politicians are swayed by special-interest groups.”

“Obviously, if you build a factory, then you do want to know that the incentives to support that factory will be there for a while,” says Chase. There are some indications that support for the IRA won’t necessarily be swayed by the elections. For example, jobs created in the solar industry would be concentrated in red states, so even a Republican administration would be motivated to maintain them. But there’s no guarantee that US policies won’t change course.

Why new proposals to restrict geoengineering are misguided

23 April 2024 at 06:00

The public debate over whether we should consider intentionally altering the climate system is heating up, as the dangers of climate instability rise and more groups look to study technologies that could cool the planet.

Such interventions, commonly known as solar geoengineering, may include releasing sulfur dioxide in the stratosphere to cast away more sunlight, or spraying salt particles along coastlines to create denser, more reflective marine clouds.  

The growing interest in studying the potential of these tools, particularly through small-scale outdoor experiments, has triggered corresponding calls to shut down the research field, or at least to restrict it more tightly. But such rules would halt or hinder scientific exploration of technologies that could save lives and ease suffering as global warming accelerates—and they might also be far harder to define and implement than their proponents appreciate.

Earlier this month, Tennessee’s governor signed into law a bill banning the “intentional injection, release, or dispersion” of chemicals into the atmosphere for the “express purpose of affecting temperature, weather, or the intensity of the sunlight.” The legislation seems to have been primarily motivated by debunked conspiracy theories about chemtrails. 

Meanwhile, at the March meeting of the United Nations Environmental Agency, a bloc of African nations called for a resolution that would establish a moratorium, if not a ban, on all geoengineering activities, including outdoor tests. Mexican officials have also proposed restrictions on experiments within their boundaries.

To be clear, I’m not a disinterested observer but a climate researcher focused on solar geoengineering and coordinating international modeling studies on the issue. As I stated in a letter I coauthored last year, I believe that it’s important to conduct more research on these technologies because it might significantly reduce certain climatic risks. 

This doesn’t mean I support unilateral efforts today, or forging ahead in this space without broader societal engagement and consent. But some of these proposed restrictions on solar geoengineering leave vague what would constitute an acceptable, “small” test as opposed to an unacceptable “intervention.” Such vagueness is problematic, and its potential consequences would have far more reach than the well-intentioned proponents of regulation might wish for.

Consider the “intentional” standard of the Tennessee bill. While it is true that the intentionality of any such effort matters, defining it is tough. If knowing that an activity will affect the atmosphere is enough for it to be considered geoengineering, even driving a car—since you know its emissions warm up the climate—could fall under the banner. Or, to pick an example operating on a much larger scale, a utility might run afoul of the bill, since operating a power plant produces both carbon dioxide that warms up the planet and sulfur dioxide pollution that can exert a cooling effect.

Indeed, a single coal-fired plant can pump out more than 40,000 tons of the latter gas a year, dwarfing the few kilograms proposed for some stratospheric experiments. That includes the Harvard project recently scrapped in light of concerns from environmental and Indigenous groups. 

Of course, one might say that in all those other cases, the climate-altering impact of emissions is only a side effect of another activity (going somewhere, producing energy, having fun). But then, outdoor tests of solar geoengineering can be framed as efforts to gain further knowledge for societal or scientific benefit. More stringent regulations suggest that, of all intentional activities, it is those focused on knowledge-seeking that need to be subjected to the highest scrutiny—while joyrides, international flights, or bitcoin mining are all fine.

There could be similar challenges even with more modest proposals to require greater transparency around geoengineering research. In a submission to federal officials in March, a group of scholars suggested, among other sensible updates, that any group proposing to conduct outdoor research on weather modification anywhere in the world should have to notify the National Oceanic and Atmospheric Administration in advance.

But creating a standard that would require notifications from anyone, anywhere who “foreseeably or intentionally seeks to cause effects within the United States” could be taken to mean that nations can’t modify any kind of emissions (or convert forests to farmland) before consulting with other countries. For instance, in 2020, the International Maritime Organization introduced rules that cut sulfate emissions from the shipping sector by more than 80%, all at once. The benefits for air quality and human health are pretty clear, but research also suggested that the change would unmask additional global warming, because such pollution can reflect away sunlight either directly or by producing clouds. Would this qualify?

It is worth noting that both those clamoring for more regulations and those bristling to just go out and “do something” claim to have, as their guiding principle, a genuine concern for the climate and human welfare. But again, this does not necessarily justify a “Ban first—ask questions later” approach,  just as it doesn’t justify “Do something first—ask permission later.” 

Those demanding bans are right in saying that there are risks in geoengineering. Those include potential side effects in certain parts of the world—possibilities that need to be better studied—as well as vexing questions about how the technology could be fairly and responsibly governed in a fractured world that’s full of competing interests.

The more recent entrance of venture-backed companies into the field, selling dubious cooling credits or playing up their “proprietary particles,” certainly isn’t helping its reputation with a public that’s rightly wary of how profit motives could influence the use of technologies with the power to alter the entire planet’s climate. Nor is the risk that rogue actors will take it upon themselves to carry out these sorts of interventions. 

But burdensome regulation isn’t guaranteed to deter bad actors. If anything, they’ll just go work in the shadows. It is, however, a surefire way to discourage responsible researchers from engaging in the field. 

All those concerned about “meddling with the climate” should be in favor of open, public, science-informed strategies to talk more, not less, about geoengineering, and to foster transparent research across disciplines. And yes, this will include not just “harmless” modeling studies but also outdoor tests to understand the feasibility of such approaches and narrow down uncertainties. There’s really no way around that. 

In environmental sciences, tests involving dispersing substances are already performed for many other reasons, as long as they’re deemed safe by some reasonable standard. Similar experiments aimed at better understanding solar geoengineering should not be treated differently just because some people (but certainly not all of them) object on moral or environmental grounds. In fact, we should forcefully defend such experiments both because freedom of research is a worthy principle and because more information leads to better decision-making.

At the same time, scientists can’t ignore all the concerns and fears of the general public. We need to build more trust around solar geoengineering research and confidence in researchers. And we must encourage people to consider the issue from multiple perspectives and in relation to the rising risks of climate change.

This can be done, in part, through thoughtful scientific oversight efforts that aim to steer research toward beneficial outcomes by fostering transparency, international collaborations, and public engagement without imposing excessive burdens and blanket prohibitions.

Yes, this issue is complicated. Solar geoengineering may present risks and unknowns, and it raises profound, sometimes uncomfortable questions about humanity’s role in nature. 

But we also know for sure that we are the cause of climate change—and that it is exacerbating the dangers of heat waves, wildfires, flooding, famines, and storms that will inflict human suffering on staggering scales. If there are possible interventions that could limit that death and destruction, we have an obligation to evaluate them carefully, and to weigh any trade-offs with open and informed minds. 

Daniele Visioni is a climate scientist and assistant professor at Cornell University.

These artificial snowdrifts protect seal pups from climate change

22 April 2024 at 05:00

Just before 10 a.m., hydrobiologist Jari Ilmonen and his team of six step out across a flat, half-mile-wide disk of snow and ice. For half the year this vast clearing is open water, the tip of one arm of the labyrinthine Lake Saimaa, Finland’s biggest lake, which reaches almost to Russia’s western border. As each snow boot lands, there’s a burst of static, like the spine-tingling scrape of a freezer drawer closing. “It’s a poor amount of snow,” complains Ilmonen, who sees less than half the 20 centimeters (eight inches) he’d hope for in mid-January. 

To reach their destination, one of the roughly 14,000 islands that poke out from the lake’s frozen surface, the team must walk for almost an hour in temperatures of −17 °C (1.4 °F). Ilmonen pays close attention to the snow underfoot because today it will be the material from which they construct lifesaving shelters for the Saimaa ringed seal, one of the world’s most endangered seals.

""
Hydrobiologist Jari Ilmonen and his team set out across Lake Saimaa in Finland, where they are building artificial snowbanks for endangered Saimaa ringed seals.
MATTHEW PONSFORD

One key question brings volunteers out in these icy conditions: How will an animal that’s born inside a grotto of snow survive on a warming planet? For millennia, during Saimaa’s blistering winters, wind drove snow into meters-high snowbanks along the lake’s shoreline, offering prime real estate from which these seals carved cave-like dens to shelter from the elements and raise newborns. But in recent decades, these snowdrifts have failed to form in sufficient numbers, as climate change has brought warming temperatures and rain in place of snow.

For the last 11 years, humans have stepped in to construct for these animals what nature can no longer reliably provide.

For the last 11 years, humans have stepped in to construct what nature can no longer reliably provide. Human-made snowdrifts, built using handheld snowplows to mimic the actions of strong winds, are the latest in a raft of measures that have brought Saimaa’s seals back from the brink of extinction, following curbs on hunting and industrial pollution, and seasonal bans on fishing with gill nets. Now the seal population is rebounding, from lows of 100 or so in the 1980s to about 400 today. Some 320 pups—half of all Saimaa ringed seals born since 2014—took their first breath inside these shelters.

close-up of a florescent stick, marked with numbers in the snow

Volunteers pile up and compact layers of snow to build a meter-high snowbank.

This year, Ilmonen and his colleagues at Finland’s parks and wildlife agency have been watching since winter began for signs of trouble ahead. By December, an ice sheet typically covers the lake, and seals will use sharp claws on their front flippers to make a hole in the ice from the water below before carving out their den inside the snow piled above. A lack of snow or ice could spell the death of all the year’s pups. 

As ice and snow arrive, the teams spring into action, joined by groups run by the charity World Wildlife Fund in southern parts of Lake Saimaa. All of today’s volunteers—including a nurse and yoga instructor—are constructing seal habitats for the first time. Their destinations are plotted on a map kept secret under Finnish law to protect these rare creatures. The first site is in a sheltered cove shadowed by rocks and trees on the north side of a small island, where the snowdrifts they make will be protected from melting through spring. On arrival, Ilmonen hammers a heavy metal spike called a tuura through the ice and uses a measuring stick to check that there is close to a meter of space for the seals to swim below. 

Today, the levels are right, and he marks out an area for the snowdrift. Construction begins by driving loose snow into a bank about eight meters (26 feet) long and three meters wide. As snow piles up, Ilmonen stomps it down to form compact layers until it reaches a height of about a meter. If all goes to plan, fresh snowfall will add a further layer of cover.

Over the last decade, the locations, designs, and construction methods for anthropogenic snowdrifts have been developed by scientists from the University of Eastern Finland and the Finnish parks agency. Each year data is gathered by a seal census (some years with the help of camera traps that record seals’ preferences and the performance of their shelters), and the process is tweaked the following year. The first shelters were smaller, with loosely piled snow, explains ecologist Miina Auttila, who invented the artificial snowdrift for her PhD thesis in 2010, but “after the first winter, the drifts we had piled up had melted surprisingly quickly and the roofs of the lairs collapsed.” Pups left exposed can freeze or be eaten by foxes, wolves, lynx, or wolverines.

Stanislav Roudavski, founder of Deep Design Lab at the University of Melbourne, says this type of rigorous data gathering and iterative design is one way we can begin to treat other species as collaborators and “co-design” with them. 

Environmental scientists and designers are envisioning more ways to support wild organisms through what’s sometimes called “interspecies” or “more-than-­human” design, such as by producing artificial reefs or wildlife bridges. The shelters are one of many solutions meant to respond to specific populations’ conservation needs. Other examples include the grisly vulture restaurants in Nepal—enclosures where the scavenging birds are fed cattle carcasses free from the poisons that have decimated populations—and 3D-printed nesting boxes that Deep Design Lab has built for rare owls. 

Two people hold the tether attached to a floating structure on the lake
In warmer winters, when the lake does not freeze over, floating nesting structures are used to allow seals to shelter safely.
RIIKKA ALAKOSKI

Whether this year’s snowdrifts have been used will not be known until spring, after the seals have departed and left visible holes where dens have been, along with white fluff from newborns. To date, three-quarters of the nearly 2,000 snowdrifts made by humans around Lake Saimaa have been used by seals, and in recent mild winters, those dens have housed 90% of seal pups.

Since 2016, Auttila and researchers from the University of Eastern Finland have searched for a solution that will last through the years ahead, when climate models predict that Saimaa will no longer be covered by ice and snow each year. This year, 33 reusable floating artificial nest structures were deployed around Saimaa, using plastic tubes as floats and organic siding made of peat or willow, to provide the first artificial habitats for large, free-ranging wild mammals. 

Wildlife cameras revealed five pups born in earlier prototypes of these shelters, which have meanwhile repelled foxes, raccoon dogs, and lynx. Yet seals still prefer snow if they can find it. The project aims to next produce a seal-safe shelter that is easy to transport by snowmobile. Most crucially, Auttila adds, “seals have to accept it.”

Matthew Ponsford is a freelance reporter based in London.

How to build a thermal battery

18 April 2024 at 06:00

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The votes have been tallied, and the results are in. The winner of the 11th Breakthrough Technology, 2024 edition, is … drumroll please … thermal batteries! 

While the editors of MIT Technology Review choose the annual list of 10 Breakthrough Technologies, in 2022 we started having readers weigh in on an 11th technology. And I don’t mean to flatter you, but I think you picked a fascinating one this year. 

Thermal energy storage is a convenient way to stockpile energy for later. This could be crucial in connecting cheap but inconsistent renewable energy with industrial facilities, which often require a constant supply of heat. 

I wrote about why this technology is having a moment, and where it might wind up being used, in a story published Monday. For the newsletter this week, let’s take a deeper look at the different kinds of thermal batteries out there, because there’s a wide world of possibilities. 

Step 1: Choose your energy source

In the journey to build a thermal battery, the crucial first step is to choose where your heat comes from. Most of the companies I’ve come across are building some sort of power-to-heat system, meaning electricity goes in and heat comes out. Heat often gets generated by running a current through a resistive material in a process similar to what happens when you turn on a toaster.

Some projects may take electricity directly from sources like wind turbines or solar panels that aren’t hooked up to the grid. That could reduce energy costs, since you don’t have to pay surcharges built into grid electricity rates, explains Jeffrey Rissman, senior director of industry at Energy Innovation, a policy and research firm specializing in energy and climate. 

Otherwise, thermal batteries can be hooked up to the grid directly. These systems could allow a facility to charge up when electricity prices are low or when there’s a lot of renewable energy on the grid. 

Some thermal storage systems are soaking up waste heat rather than relying on electricity. Brenmiller Energy, for example, is building thermal batteries that can be charged up with heat or electricity, depending on the customer’s needs. 

Depending on the heat source, systems using waste heat may not be able to reach temperatures as high as their electricity-powered counterparts, but they could help increase the efficiency of facilities that would otherwise waste that energy. There’s especially high potential for high-temperature processes, like cement and steel production. 

Step 2: Choose your storage material

Next up: pick out a heat storage medium. These materials should probably be inexpensive and able to reach and withstand high temperatures. 

Bricks and carbon blocks are popular choices, as they can be packed together and, depending on the material, reach temperatures well over 1,000 °C (1,800 °F). Rondo Energy, Antora Energy, and Electrified Thermal Solutions are among the companies using blocks and bricks to store heat at these high temperatures. 

Crushed-up rocks are another option, and the storage medium of choice for Brenmiller Energy. Caldera is using a mixture of aluminum and crushed rock. 

Molten materials can offer even more options for delivering thermal energy later, since they can be pumped around (though this can also add more complexity to the system). Malta is building thermal storage systems that use molten salt, and companies like Fourth Power are using systems that rely in part on molten metals. 

Step 3: Choose your delivery method

Last, and perhaps most important, is deciding how to get energy back out of your storage system. Generally, thermal storage systems can deliver heat, use it to generate electricity, or go with some combination of the two. 

Delivering heat is the most straightforward option. Typically, air or another gas gets blown over the hot thermal storage material, and that heated gas can be used to warm up equipment or to generate steam. 

Some companies are working to use heat storage to deliver electricity instead. This could allow thermal storage systems to play a role not only in industry but potentially on the electrical grid as an electricity storage solution. One downside? These systems generally take a hit on efficiency, the amount of energy that can be returned from storage. But they may be right for some situations, such as facilities that need both heat and electricity on demand. Antora Energy is aiming to use thermophotovoltaic materials to turn heat stored in its carbon blocks back into electricity. 

Some companies plan to offer a middle path, delivering a combination of heat and electricity, depending on what a facility needs. Rondo Energy’s heat batteries can deliver high-pressure steam that can be used either for heating alone or to generate some electricity using cogeneration units. 

The possibilities are seemingly endless for thermal batteries, and I’m seeing new players with new ideas all the time. Stay tuned for much more coverage of this hot technology (sorry, I had to). 


Now read the rest of The Spark

Related reading

Read more about why thermal batteries won the title of 11th breakthrough technology in my story from Monday.

I first wrote about heat as energy storage in this piece last year. As I put it then: the hottest new climate technology is bricks. 

Companies have made some progress in scaling up thermal batteries—our former fellow June Kim wrote about one new manufacturing facility in October.

VIRGINIA HANUSIK

Another thing

The state of Louisiana in the southeast US has lost over a million acres of its coast to erosion. A pilot project aims to save some homes in the state by raising them up to avoid the worst of flooding. 

It’s an ambitious attempt to build a solution to a crisis, and the effort could help keep communities together. But some experts worry that elevation projects offer too rosy an outlook and think we need to focus on relocation instead. Read more in this fascinating feature story from Xander Peters.

Keeping up with climate  

It can be easy to forget, but we’ve actually already made a lot of progress on addressing climate change. A decade ago, the world was on track for about 3.7 °C of warming over preindustrial levels. Today, it’s 2.7 °C with current actions and policies—higher than it should be but lower than it might have been. (Cipher News)

We’re probably going to have more batteries than we actually need for a while. Today, China alone makes enough batteries to satisfy global demand, which could make things tough for new players in the battery game. (Bloomberg

2023 was a record year for wind power. The world installed 117 gigawatts of new capacity last year, 50% more than the year before. (Associated Press)

Here’s what’s coming next for offshore wind. (MIT Technology Review)

Coal power grew in 2023, driven by a surge of new plants coming online in China and a slowdown of retirements in Europe and the US. (New York Times)

People who live near solar farms generally have positive feelings about their electricity-producing neighbors. There’s more negative sentiment among people who live very close to the biggest projects, though. (Inside Climate News)

E-scooters have been zipping through city streets for eight years, but they haven’t exactly ushered in the zero-emissions micro-mobility future that some had hoped for. Shared scooters can cut emissions, but it all depends on rider behavior and company practices. (Grist)

The grid could use a renovation. Replacing existing power lines with new materials could double grid capacity in many parts of the US, clearing the way for more renewables. (New York Times

The first all-electric tugboat in the US is about to launch in San Diego. The small boats are crucial to help larger vessels in and around ports, and the fossil-fuel-powered ones are a climate nightmare. (Canary Media)

Hydrogen trains could revolutionize how Americans get around

18 April 2024 at 05:00

Like a mirage speeding across the dusty desert outside Pueblo, Colorado, the first hydrogen-fuel-cell passenger train in the United States is getting warmed up on its test track. Made by the Swiss manufacturer Stadler and known as the FLIRT (for “Fast Light Intercity and Regional Train”), it will soon be shipped to Southern California, where it is slated to carry riders on San Bernardino County’s Arrow commuter rail service before the end of the year. In the insular world of railroading, this hydrogen-powered train is a Rorschach test. To some, it represents the future of rail transportation. To others, it looks like a big, shiny distraction.

In the quest to decarbonize the transportation sector—the largest source of greenhouse-gas emissions in the United States—rubber-tired electric vehicles tend to dominate the conversation. But to reach the Biden administration’s goal of net-zero emissions by 2050, other forms of transportation, including those on steel wheels, will need to find new energy sources too. 

The best way to decarbonize railroads is the subject of growing debate among regulators, industry, and activists. Things are coming to a head in California, which recently enacted rules requiring all new passenger locomotives operating in the state to be zero-emissions by 2030 and all new freight locomotives to meet that threshold by 2035. Federal regulators could be close behind.

The debate is partly technological, revolving around whether hydrogen fuel cells, batteries, or overhead electric wires offer the best performance for different railroad situations. But it’s also political: a question of the extent to which decarbonization can, or should, usher in a broader transformation of rail transportation. For decades, the government has largely deferred to the will of the big freight rail conglomerates. Decarbonization could shift that power dynamic—or further entrench it. 

So far, hydrogen has been the big technological winner in California. Over the past year, the California Department of Transportation, known as Caltrans, has ordered 10 hydrogen FLIRT trains at a cost of $207 million. After the Arrow service, the next rail line to receive hydrogen trains is scheduled to be the Valley Rail service in the Central Valley. That line will connect Sacramento to California High-Speed Rail, the under-construction system that will eventually link Los Angeles and San Francisco.

In its analysis of different zero-­emissions rail technologies, Caltrans found that hydrogen trains, powered by onboard fuel cells that convert hydrogen into electricity, had better range and shorter refueling times than battery-electric trains, which function much like electric cars. Hydrogen was also a cheaper power source than overhead wire (or simply “electrification,” in industry parlance), which would cost an estimated $6.8 billion to install on the state’s three main intercity routes. (California High-Speed Rail and its shared track on the Bay Area’s Caltrain commuter service will both be powered by overhead wire, since electrification is necessary to reach speeds of over 100 miles per hour.)  

Further complicating the electrification option, installing overhead wire on the rest of California’s passenger network would require the consent of BNSF and Union Pacific, the two major freight rail carriers that own most of the state’s tracks. The companies have long opposed the installation of wire above their tracks, which they say could interfere with double-stacked freight trains. 

Electrifying all 144,000 miles of the nation’s freight rail tracks would cost hundreds of billions of dollars, according to a report by the Association of American Railroads (AAR), an industry trade group, and even electrifying smaller sections of track would result in ongoing disruptions to train traffic and shift freight customers from trains to trucks, the group claims. Electrification would also require the cooperation of electric utilities, leaving railroads vulnerable to the grid connection delays that plague renewable-energy developers. 

“We have long stretches of track outside of urbanized areas,” says Marcin Taraszkiewicz, an engineer at the engineering and architecture firm HDR who has worked on Caltrans’s hydrogen train program. Getting power to those rugged places can be a challenge, he says, especially when infrastructure must be designed to resist natural disasters like wildfires and earthquakes: “If that wire goes down, you’re going to be in trouble.” 

The AAR thinks California’s railroad emissions regulations are too much, too soon, especially given that freight rail is already three to four times more fuel efficient than trucking. Last year, the AAR sued the state over its latest railroad emissions regulations, in a case that is still pending. Though the group generally prefers hydrogen to electrification as a long-term solution, it contends that this alternative technology is not yet mature enough to meet the industry’s needs. 

A group called Californians for Electric Rail also views hydrogen as an immature technology. “From an environmental as well as a cost perspective, it’s a really circular and indirect way of doing things,” says Adriana Rizzo, the group’s founder, who is an advocate for electrifying the state’s regional and intercity tracks with overhead wire.

Synthesizing, transporting, and using the tiny hydrogen molecule can be very inefficient. Hydrogen trains currently require roughly three times more energy per mile than trains powered by overhead wire. And the environmental benefits of hydrogen—the ostensible purpose of this new technology—remain largely theoretical, since the vast majority of hydrogen today is produced by burning fossil fuels like methane. Natural-gas utilities have been among the hydrogen industry’s biggest boosters, because they are already able to produce and transport the gas. 

Opinions on the merits of hydrogen trains have been mixed. In 2022, following a pilot program, the German state of Baden-Württemberg determined that this technology would be 80% more expensive to operate over the long run than other zero-emissions alternatives. 

Kyle Gradinger, assistant deputy director for rail at Caltrans, thinks there’s been some “Twittersphere exaggeration” about the problems with hydrogen trains. In tests, the hydrogen-powered Stadler FLIRT is “performing as well as we expected, if not better,” he says. Since they also use electric motors, hydrogen trains offer many of the same benefits as trains powered by overhead wire, Gradinger says. Both technologies will be quieter, cleaner, and faster than diesel trains. 

Caltrans hopes to obtain all the hydrogen for its trains from zero-emissions sources by 2030—a goal bolstered by a draft clean-­hydrogen rule issued by the Biden administration in 2023. California is one of seven “hydrogen hubs” in the US, public-private partnerships that will receive billions of dollars in subsidies from the Infrastructure Investment and Jobs Act for developing hydrogen technologies. It’s too early to say whether Caltrans will be able to procure funding for its hydrogen fueling stations and supply chains through these subsidies, Gradinger says, but it’s certainly a possibility. So far, California is the only US state to have purchased hydrogen trains. 

Advocates like Rizzo fear, however, that all this investment in hydrogen infrastructure will get in the way of more transformative changes to passenger rail in California. 

“Why are we putting millions of dollars into buying new trains and putting up all of this infrastructure and then expecting the same crappy service that we have now?” Rizzo says. “These systems could carry so many more passengers.” 

Rizzo’s group, and allies like the Rail Passenger Association of California and Nevada, think decarbonization is an opportunity to install the type of infrastructure that supports the vast majority of fast passenger train services around the world. Though the up-front investment in overhead wire is high, electrification reduces operating costs by providing constant access to a cheap and efficient energy source. Electrification also improves acceleration so that trains can travel closer together, creating the potential for service patterns that function more like an urban metro system than a once-per-day Amtrak route. 

Caltrans has a long-term plan to dramatically increase rail service and speeds, which might eventually require electrification by overhead wire, also known as a catenary system. But at least for the next couple of decades, the agency believes, hydrogen is the most feasible way to meet the state’s ambitious climate goals. The money, the political will, and the stomach for a fight with the freight railroads and utility companies just aren’t there yet.  

“The gold standard is overhead catenary electrification, if you can do that,” Gradinger says. “But we aren’t going to get to a level of service on the intercity side for at least the next decade or two that would warrant investment in electrification.” 

Rizzo hopes that as the federal government puts more railroad emissions regulations in place, the case for electrifying rail by overhead wire will get stronger. Other countries have come to that conclusion: a 2015 policy change in India resulted in the electrification of nearly half the country’s track mileage in less than a decade. The United Kingdom’s Decarbonising Transport Plan states that electrification will be the “main way” to decarbonize the rail industry. 

These changes are still compatible with a robust freight industry. The world’s most powerful locomotives are electric, pulling ore-laden freight trains in South Africa and China. In 2002, Russia finished electrifying the 5,700-mile Trans-Siberian Railway, demonstrating that freight trains running on electric wire can travel very long distances over very harsh terrain.

Things may be starting to shift in the US as well, albeit slowly. BNSF appears to have softened its stance against electrification on a corridor it owns in Southern California, where it has agreed to allow California High-Speed Rail to construct overhead wire on its right of way. Rizzo and her group are looking to make these projects easier by sponsoring state legislation exempting overhead wire from the California Environmental Quality Act. That would prevent situations like a 2015 environmental lawsuit from the affluent Bay Area suburb of Atherton, over tree removal and visual impact, that delayed Caltrain’s electrification project for nearly two years.

New innovations could blur the lines between different kinds of green rail technologies. Caltrain has ordered a battery-­equipped electrified train that has the potential to charge up while traveling from San Francisco to San Jose and then run on a battery onward to Gilroy and Salinas. A similar system could someday be deployed in Southern California, where trains could charge through the Los Angeles metro area and run on batteries over more remote stretches to Santa Barbara and San Diego. 

New hydrogen technologies could also prove transformative for passenger rail. The FLIRT train doing laps in the Colorado desert is version 1.0. In the future, using ammonia as a hydrogen carrier could result in much longer range for hydrogen trains, as well as more seamless refueling. “With hydrogen, there’s a lot more room to grow,” Taraszkiewicz says.

But in a country that has invested little in passenger rail over the past century, new technology can only do so much, Taraszkiewicz cautions. America’s railroads all too often lack passing tracks, grade-separated road crossings, and modern signaling systems. The main impediment to faster, more frequent passenger service “is not the train technology,” he says. “It’s everything else.”

Benjamin Schneider is a freelance writer covering housing, transportation, and urban policy.

❌
❌